Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость молекулярной массы от константы равновесия

    Особое место в настоящей книге отводится теории метрики химических диаграмм, основы которой были заложены в работах Н. И. Степанова. При разработке теории метрики химических диаграмм автор следовал идеям Степанова, однако считал, что задачей этого раздела физико-химического анализа является выявление геометрических образов на диаграммах состав — свойство, отвечающих образованию компонентами химических соединений различного состава. Кроме того, установление функциональной зависимости между составом и свойством системы должно служить основным методом для расчета констант равновесия химических реакций. При развитии теории метрики химических диаграмм предполагалось, что закон действующих масс имеет физический смысл на молекулярном уровне только при выражении константы равновесия через концентрации, как это вытекает из уравнения изотермы реакции Вант-Гоффа. Несоблюдение закона действующих масс применительно к реальным системам объясняется неправомерностью выражения константы равновесия через общие концентрации реагирующих веществ без учета их ионно-молекулярного состояния. Попытка Льюиса и его последователей устранить несоответствие теории с опытом посредством введения новой переменной — активности, которая призвана заменить концентрацию, не приводит к решению проблемы, так как при этом утрачивается физический смысл закона действующих масс на молекулярном уровне. Константа равновесия имеет физический смысл только при выражении ее через равновесные концентрации тех ионно-молекулярных форм реагирующих веществ, для которых пишется уравнение химической реакции. [c.5]


    При ультрацентрифугировании раствор исследуемого полимера помещают в кювету, закрепленную во вращающемся роторе. В зависимости от применяемого метода можно получить либо среднемассовое значение молекулярной массы (метод определения скорости седиментации при больших частотах вращения - метод скоростной седиментации), либо средневзвешенное значение (метод седиментационного равновесия, осуществляемый при меньших частотах вращения). Результаты измерения получают в виде кривых распределения по константам седиментации, по которым рассчитывают молекулярную массу. [c.176]

    Этим требованиям отвечают аналитические зависимости, полученные нами для расчёта констант фазового равновесия (4.2),(4.3), молекулярных масс (4.6), энтальпий узких нефтяных фракций различных нефтепродуктов (4.7) - (4.13). [c.96]

    Реакцию поликонденсации можно остановить на любой стадии, например охлаждением реакционной массы, и выделить промежуточный продукт. Чтобы превращение исходных мономеров в полимер было максимальным, необходимо при равновесных процессах равновесие сдвинуть в сторону образования полимера. На практике это достигается удалением из реакционной среды низкомолекулярного продукта реакции. С этой целью реакцию проводят в токе инертного газа, постоянно пропускаемого через реакционную массу, или под вакуумом. Иногда низкомолекулярный продукт реакции химически связывают и таким образом препятствуют взаимодействию его с полимером. Реакция поликонденсации не всегда может быть осуществлена, т.к. взаимодействие функциональных фупп может приводить не только к образованию линейных полимеров, но и устойчивых циклов. В реакциях равновесной поликонденсации скорость и полнота удаления из сферы реакции низкомолекулярного продукта определяют среднюю молекулярную массу полимера. Если предположить, что константа равновесия К не зависит от средней степени поликонденсации (Р), то зависимость К от концентрации реагентов можно выразить уравнением [c.44]

    В зависимости от абсолютного значения константы равновесия К различают равновесную (обратимую) и неравновесную (необратимую) поликонденсацию. Если в условиях реакции степень превращения и молекулярная масса получаемых полимеров определяется равновесными концентрациями реагентов и продуктов реакции, то такая поликонденсация называется равновесной или обратимой. Для обратимых реакций величины К лежат в интервале от нескольких единиц до нескольких десятков. Например, при полиэтерификации пентаметнленгликоля и адипиновой кислоты К = 6,0, а при полиамидировании СО-аминоундекановой кислоты К — 8,9. Прн /С > 10 степень превращения функциональных групп и молекулярная масса получаемого полимера лимитируется не термодинамическими, а кинетическими факторами. Такую поликонденсацию называют неравновесной или необратимой. Так, при поликонденсации диаминов с дихлорангидридами ароматических дикарбоновых кислот К Ю . [c.32]


    В зависимости от задач и методов их решения различают качественный и количественный анализ. Цель качественного анализа — определение элементного или изотопного состава веществ. При анализе органических соединений определяют непосредственно отдельные химические элементы, например углерод, серу, фосфор, азот или функциональные группы. При анализе неорганических соединений определяют, какие ионы, молекулы, группы атомов, химические элементы составляют анализируемое вещество. Цель количественного анализа — установление количественного соотношения составных частей вещества. По результатам количественного анализа можно установить константы равновесия, произведения растворимости, молекулярные и атомные массы. Количественному анализу всегда предшествует качественный анализ. [c.11]

    При увеличении молекулярной массы мономера, как уже отмечено, константы равновесия димеризации уменьшаются до некоторого значения, которое становится постоянным для олефинов Сб и выше. Расчет равновесия димеризации высших олефинов проводится по приведенным выше соотношениям. Поскольку, однако, для таких олефинов резко возрастает число возможных образующихся димерных структур, иллюстративные модельные расчеты несут мало информации. Целесообразно выполнение расчета для конкретных условий димеризации с учетом структур образующихся димеров, так как, подобно ситуации с пропиленом, в зависимости от числа образующихся димеров конверсия может меняться в несколько раз. [c.250]

    Константа равновесия комплексообразования зависит от химической структуры углеводородов. Наибольшие значения К имеют к-алканы, причем с увеличением и молекулярной массы константа равновесия увеличивается. Зависимость константы равновесия образования комплекса от молекулярной массы н-алкана линейна. Как видно из рис. 71, извлечение комплексообразующих углеводородов (повышение /С) с удлинением цепи н-алкана происходит быстрее при меньших температурах. Охватывая довольно широкий температурный интервал, эти данные позволяют определять температуру начала образования комплекса карбамида с индивидуальными н-алканами. Кроме того, они дают возможность определять глубину извлечения н-алканов при депарафинизации нефтепродуктов при заданной температуре. [c.212]

    Во многих практически важных процессах поликонденсации константа равновесия k имеет небольшое значение. Получение-полимера высокой молекулярной массы возможно только при условии интенсивного вывода побочного продукта из зоны реакции. При этом равновесие реакции (4.1) смещается вправо, что приводит к увеличению равновесной концентрации внутримолекулярных связей Q = 0 и, следовательно, возрастанию средней степени поликонденсации полимера. Зависимость ее от количества отведенного низкомолекулярного продукта находится посла подстановки решения квадратного уравнения (4.83) в формулу (4.14). Для наиболее важного случая jxJ = jx , = 1 эта зависимость имеет вид [c.108]

    Зависимость молекулярной массы от константы равновесия [c.109]

Рис. 5.23. Зависимость величины константы равновесия -парафинов от относительной молекулярной массы М Рис. 5.23. <a href="/info/1517299">Зависимость величины</a> <a href="/info/3321">константы равновесия</a> -парафинов от <a href="/info/294366">относительной молекулярной</a> массы М
    Для тяжелых компонентов константы фазового равновесия можно определить по известным константам более легких компонентов с использованием интерполяционной зависимости. Для этого на оси абсцисс откладывают значения молекулярной массы М для двух — трех более легких компонентов, значения констант фазового равновесия которых известны, по оси ординат откладывают значения Ig найденных констант фазового равновесия этих компонентов. Через полученные точки проводят прямую. Значение Ig константы фазового равновесия тяжелого компонента определится как ордината точки пересечения перпендикуляра, вос- [c.61]

    Теоретически рост макромолекул должен прекращаться, когда прореагируют все функциональные группы в молекулах мономеров и образуется одна макромолекула Практически продукт поликонденсацни состоит из достаточно большого числа молекул, отличающихся друг от друга по молекулярной массе (т е по степени полимеризации) Это объясняется обратимостью реакции поликонденсации, уменьшением подвижности макромолекул с увеличением их молекулярной массы, протеканием деструкционных процессов Для того чтобы сдвинуть равновесие реакции в сторону образования полимера, необходимо постоянно удалять из реакционной массы низкомолекулярный продукт Однако, если константа равновесия достаточно велика, в этом нет необходимости (иапример, реакция формальдегида с фенолами, карбамидом, аминами) Средняя степень полимеризации х имеет следующую зависимость от константы равновесия [c.23]

    Научная новизна. Разработаны математические универсальные модели для расчета стандартных и критических свойств и термобарических зависимостей углеводородов и узких нефтяных фракций, молекулярной массы, идентификации углеводородов и оценки химического состава узких нефтяных фракций, ряд термодинамических свойств углеводородов, в том числе теплоемкости, энтальпии и энтропии, термобарической зависимости констант фазового равновесия узких нефтяных фракций. [c.4]


    Зависимость максимальной молекулярной массы полимера от температуры определяется соответствующим изменением константы равновесия, которое связано с тепловым эффектом реакции. [c.542]

    Энергии связи могут быть найдены экспериментально по электронно-колебательным спектрам веществ, путем масс-спектроскопических измерений молекулярных масс осколков молекулы при одновременном изучении температурной зависимости соответствующей константы равновесия и другими способами. [c.356]

    Термодинамическая вероятность дегидрирования возрастает с повышением температуры и молекулярной массы парафина. При отщеплении одной молекулы водорода константа равновесия имеет следующую зависимость от общего давления (Р) и равновесной степени конверсии (х)  [c.77]

    Первые термодинамические расчеты [36, 47, 48] были посвящены выявлению термодинамическо й вероятности осуществления димеризации олефинов при различных температурах. Было установлено, что при температурах до приблизительно 500 К константы равновесия димеризации олефинов с получением а-димера значительны, но при более высоких температурах быстро уменьшаются. По мере роста молекулярной массы мономера эти константы уменьшаются — при переходе от этилена к пентену-1, а далее остаются постоянными. Рис. 19 демонстрирует -изменение величины АС° полимеризации с температурой, в табл. 60 и 61 приведены А0° и константы равновесия димеризации -олефинов в а-олефины в зависимости от температуры. [c.246]

    Б зависимости от константы равновесия к реакции (3.2) процесс поликонденсации будет равновесным или неравновесным. При небольших значениях к для получения высокомолекулярного полимера необходимо осуществлять отвод побочного продукта из зоны реакции, так как в закрытой системе средняя молекулярная масса полимера в равновесии оказывается низкой. Когда к достаточно велика, равновесие реакции (3.2) сильно сдвинуто вправа, следовательно, реакцией деструкции полимера можно пренебречь и при расчете кинетики учитывать только прямую реакцию конденсации, считая, что она протекает необратимо. Такую неравновесную поликондепсацию относят поэтому к необратимым процессам, В случае обратимой поликонденсации, при которой скорости прямой и обратной реакций (3.2) сравнимы, [c.71]

    Первые термодинамические расчеты были посвящены выявлению термодинамической вероятности осуществления олигомеризации олефинов при различных температурах. В этих расчетах было показано, что до 500 К константы равновесия димеризации олефинов с получением а-димера достаточно высоки, но при дальнейшем повышении температуры они быстро уменьшаются. По мере роста молекулярной массы мономера от этилена к пентеиу значения констант уменьшаются, а далее остаются постоянными. Рис. 1.1 демонстрирует изменение стандартной энергии Гиббса (AG ) олигомеризации, а в табл. 1,1 приведены значения AG° димеризации а-олефинов в а-димеры в зависимости от температуры. [c.9]

    Влияние темнературы на скорость поликонденсацни и молекулярную массу полимера. Скорость поликонденсации, как и всех химических реакций, увеличивается с повышением температуры. Зависимость максимальной молекулярной массы полимера от температуры определяется соответствующим изменением константы равновесия, которое связано с величиной теплового эффекта реакции Q уравнением изохоры (изобары). [c.148]

    Первые расчетно-теоретические работы, относящиеся к линейной поликонденсации, были опубликованы еще в конце тридцатых годов [1, 21. В своей основополагающей работе [11 Флори на основе предложенного им принципа впервые рассчитал статистическим методом ММР продуктов гомо- и гетер оно ликондепса-ции. Пользуясь принципом детального баланса, Шульц [2] вывел формулу ММР продуктов равновесной гомополиконденсации и нашел теоретическую зависимость молекулярной массы полимера от константы равновесия реакции. В дальнейшем Мегги [3] об-обпщл эти результаты на равновесную гетерополиконденсацию. Б начале 40-х годов Флори [4—5] предложил еще два способа вывода носящего его имя распределения в равновесных системах. Первый из них [4], аналогичный выводу распределения Максвелла молекул по кинетическим энергиям, заключается [c.81]

    Из рис. 4.2 видно, что если в отсутствие побочных реакций молекулярная масса образующегося полимера достигает определенного значения, зависимого от константы поликонденсационного равновесия, то побочные реакции приводят к снижению равновесной молекулярной массы полимера. В ряде случаев побочные реакции могут привести к другим изменениям в полимере появлению разветвле1п-1ости, изменению природы концевых групп н т. д. [c.117]

    Зависимость максимальной молекулярной массы полимера от температуры определяется соответствующим изменением константы равновесия, которое связано с величиной теплового эффекта реакции уравнением изохоры (изобары)  [c.148]

    Физико-химические свойства рассчитываются по зависимостим, полученным в БашНИИШ для расчета констант фазового равновесия Г 6 7, дая расчета энта пий Г 7 7 и для расчета молекулярных масс Г 8 7.  [c.141]

    Теоретические основы. Известны термодинамические данные о циклопентанах с 5, 6 и 7-ю углеродными атомами, но еще существуют, например, 9 изомерных циклопентановых углеводородов с 8-ю углеродными атомами, для которых рекомендуются приближенные термодинамические расчеты. Миграция заместителей в кольце может протекать как с небольшим поглощением, так и с небольшим выделением тепла. Наиболее технически важные реакции изомеризации цикланов связаны с сужением-расширением цикла. Сужение цикла идет с поглощением тепла и со значительным увеличением энтропии, что обусловливает существенную зависимость константы равновесия от температуры. Для изомеризации циклогексанон в циклопентаны, идущей с поглощением тепла, термодинамически выгодны более высокие температуры. Например, при увеличении температуры с 27 °С до 427 °С равновесная концентрация циклогексана снижается с 86 % до 10 % за счет увеличения доли метилциклопентана. Чем выше молекулярная масса исходного углеводорода, тем ниже константа равновесия перехода aJжилциклoгeк aнa в алкил-циклопентан. [c.892]

    При изучении свойств растворов полиамидокнслоты на основе пиромеллитового диангидрида и диаминодифенилового эфира в диметилацетамиде методом светорассеяния наблюдается подавление полиэлектролитного эффекта при добавлении бромида лития [336]. Инкремент показателя преломления составляет 0,210 г на 100 мл. При осмометрических измерениях равновесие устанавливается через 7—10 ч. В зависимости от метода синтеза М изменяется от 13 000 до 55 000, а М — от 9 900 до 226 000. Характеристическая вязкость полимера приведена в табл. 7.4. Значения экспоненты, равные 0,78—0,8, характерны для сольватированного проницаемого клубка. Уравнение, связывающее константу седиментации и молекулярную массу, имеет следующий вид  [c.704]

    Для газов факт сложения молекул выводится из определений плотности. Если получается заметно завышенный молекулярный вес, то имеется либо полимеризация, либо ассоциация. Особыми опытами требуется затем еще решить, какие силы сдерживают молекулы, связанные между собой. Незначительные отклонения от газовых законов почти всегда основаны не на образовании коротко живущих ассоциатов. Зависимость кажущегося молекулярного веса от давления позволяет выявить, имеется ли только один ассоциат (в таком случае следует распространить закон действующих масс на равновесие между ассоциатом и простой молекулой) или образуется большое число ассоциатов различного молекулярного веса. Примером первого случая является парообразная фаза муравьиной и уксусной кислот при температурах, близких к точке кипения. Муравьиная и уксусная кислоты в паровой фазе образуют двойные молекулы (НСООН)з и (СНзСООН) , находящиеся в равновесии с одинарными молекулами, количество которых возрастает с уменьшением давления и повышением температуры. Из температурной зависимости константы равновесия (НСООН) 2НС00Н выводится теплота ассоциации или диссоциации она составляет для муравьиной кислоты 14,1 ккал [44], для уксусной кислоты 13,8 [45] или 16,4 ккал. Несколько ассоциатов имеется в парах фтористого водорода. В этом случае расчет равновесия для определенного процесса ассоциации невозможен. С ростом температуры и здесь ассоциация падает, при 100° существует уже почти исключительно мономолекулярный фтористый водород НР. [c.224]

    В тех случаях, когда состав исходной смеси известен до С5Н]2, константы равновесия фракции С5Н12 определяются по аналогичным формулам в зависимости от ее молекулярной массы  [c.162]

    Термодинамические исследования Дж.Амикоа, Д.Катца, Б.Сейджа, Т.П. узе, Г.С.Степановой, Р.М.Тер-Саркисова / I / и других авторов показали, что существование области максимальной конденсации обусловливается зависимостями констант фазового равновесия углеводородов от давления. Чем ниже молекулярная масса компонента, тем большему давлению соответствует область максимальной конденсации и тем раньше - при снижении давления - начинается процесс нормального испарения (рис.1,2,3). Смеси углеводородных компонентов характеризуются некоторыми средними значениями давлений максимальной конденсации - так, для вуктыльской смеси это значение, как указывалось выше, близко к 0,15 (или 5-6 МПа). [c.30]


Смотреть страницы где упоминается термин Зависимость молекулярной массы от константы равновесия: [c.175]    [c.198]    [c.35]   
Смотреть главы в:

Кинетика полимеризационных процессов -> Зависимость молекулярной массы от константы равновесия




ПОИСК





Смотрите так же термины и статьи:

Константа зависимость

Константа равновесия

Константы молекулярные

Массив констант

Молекулярная масса

Молекулярный вес (молекулярная масса))

Равновесие константу, Константа равновесия



© 2025 chem21.info Реклама на сайте