Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсация константа равновесия

    Во многих практически важных процессах поликонденсации константа равновесия k имеет небольшое значение. Получение-полимера высокой молекулярной массы возможно только при условии интенсивного вывода побочного продукта из зоны реакции. При этом равновесие реакции (4.1) смещается вправо, что приводит к увеличению равновесной концентрации внутримолекулярных связей Q = 0 и, следовательно, возрастанию средней степени поликонденсации полимера. Зависимость ее от количества отведенного низкомолекулярного продукта находится посла подстановки решения квадратного уравнения (4.83) в формулу (4.14). Для наиболее важного случая jxJ = jx , = 1 эта зависимость имеет вид [c.108]


    Неравновесная поликонденсация характеризуется высоким значением константы равновесия (1000—10 ООО и более) для равновесной поликонденсации константа равновесия не превышает 1000. [c.47]

    Но это та же константа равновесия, что и использованная выше в уравнении для расчета средней степени поликонденсации Рк. Поэтому можно связать величины Рк ил  [c.277]

    Нужно заметить, что если в ходе поликонденсации концентрация воды остается постоянной (это можно обеспечить технологическими приемами), а концентрация мономерных единиц, вступающих в реакцию, одинакова, то термодинамический анализ поликонденсации, по существу, тот же, что и для полимеризации. Поэтому можно использовать рассмотренные выше для полимеризации методы определения констант равновесия, теплот и изменений энтропий. Поликонденсацию, как и полимеризацию, можно характеризовать предельной температурой. [c.278]

    В зависимости от способа проведения и строения исходных мономеров реакция поликонденсации может идти как равновесная и как необратимая. Необратимая поликонденсация обычно протекает с большой скоростью. Обратимая поликонденсация осуществляется, как правило, с малой скоростью. Так, из диаминов и дикарбоновых кислот образуются полиамиды. Процесс обратимой поликонденсации, как и обычная конденсация, характеризуется константой равновесия К и константами скорости прямой и обратной реакций. В момент равновесия скорость образования высокомолекулярного соединения равна скорости его деструкции. Если обе реакции второго порядка и если условно принять, что функциональные группы участвуют только в реакциях поликонденсации и не участвуют в побочных процессах, то фактическая скорость и образования продукта поликонденсации за промежуток временит будет равна [c.197]

    Константа равновесия обратимых процессов К=к к2. Следовательно, фактическая скорость образования высокомолекулярного соединения в результате поликонденсации может быть выражена уравнением [c.198]

    Из уравнения (VII. 15) видно, что скорость процесса поликонденсации, условия равновесия и выход конечного высокомолекулярного соединения в большой мере определяются количеством низкомолекулярного побочного продукта G в реакционной среде. Зависимость предельной степени поликонденсации j n от константы равновесия К и концентрации низкомолекулярного соединения в реакционной смеси С выражается уравнением [c.198]

    Реакции оксиметилирования (а и б) и реакции конденсации (в, д и е) практически необратимы. Константа равновесия процесса поликонденсации, условно выражаемого уравнением  [c.399]


    Если все связи в продукте поликонденсации равноценны и константа равновесия при их образовании постоянна, то [c.59]

    Средняя степень полимеризации продукта поликонденсации прямо пропорциональна корню квадратному из константы равновесия и обратно пропорциональна корню квадратному из мольной доли простейшего вещества, выделяющегося при реакции. [c.146]

    Влияние примесей монофункциональных соединений на молекулярную массу продукта поликонденсации непосредственно связано с константой равновесия. При введении монофункционального соединения, блокирующего одну из функциональных групп, концентрация этих групп уменьшается и соответственно уменьшается знаменатель в выражении константы равновесия  [c.150]

    В своих опытах Гриль и Форстер нашли, что константа равновесия не зависит от степени поликонденсации, иначе говоря, реакционная способность [c.74]

    Изучение закономерностей процессов поликонденсации и обобщение большого экспериментального материала привели к представлению, что известные поликонденсационные процессы можно подразделить на две группы - равновесную и неравновесную поликонденсации [3, 4, 12,40], отличающиеся характером основных реакций и величиной константы равновесия. [c.9]

    Основной особенностью неравновесной поликонденсации является отсутствие деструкции полимера низкомолекулярным продуктом поликонденсации, а в большинстве случаев - отсутствие в поликонденсационном процессе и других обменных деструктивных превращений. Следовательно, для неравновесной поликонденсации должны быть характерны высокие значения константы равновесия процесса [c.9]

    Несомненно, что для управления процессом поликонденсации знание констант равновесия и влияющих на нее факторов очень важно. К сожалению, к настоящему времени в этом отношении имеется еще очень немного данных, и это одна из задач будущих исследований. [c.15]

    Представляется весьма целесообразным все же и уточнение понятия "неравновесная поликонденсация" с точки зрения того, что может служить должным мерилом этого. Те немногочисленные константы равновесия по поликон-денсационным процессам, которыми располагает полимерная химия, дают об этом [c.15]

    Равновесная поликонденсация характеризуется константой равновесия Кр  [c.5]

    Реакцию поликонденсации можно остановить на любой стадии, например охлаждением реакционной массы, и выделить промежуточный продукт. Чтобы превращение исходных мономеров в полимер было максимальным, необходимо при равновесных процессах равновесие сдвинуть в сторону образования полимера. На практике это достигается удалением из реакционной среды низкомолекулярного продукта реакции. С этой целью реакцию проводят в токе инертного газа, постоянно пропускаемого через реакционную массу, или под вакуумом. Иногда низкомолекулярный продукт реакции химически связывают и таким образом препятствуют взаимодействию его с полимером. Реакция поликонденсации не всегда может быть осуществлена, т.к. взаимодействие функциональных фупп может приводить не только к образованию линейных полимеров, но и устойчивых циклов. В реакциях равновесной поликонденсации скорость и полнота удаления из сферы реакции низкомолекулярного продукта определяют среднюю молекулярную массу полимера. Если предположить, что константа равновесия К не зависит от средней степени поликонденсации (Р), то зависимость К от концентрации реагентов можно выразить уравнением [c.44]

    Образование высокомолекулярного продукта поликонденсации прекращается при выделении 10% воды от ее полного количества, получающегося в процессе реакции (если константа равновесия имеет величину порядка 1—10). Поэтому очень важно удалять побочные продукты поликонденсации настолько полно, насколько это возможно. [c.192]

    Как показали работы Н. Н. Меншуткина, П. Флори и др., равновесие первого типа принципиально не отличается от равновесия при обычной конденсации. Константа равновесия К имеет одно и то же значение на всех стадиях поликонденсации независимо от величины радикала, связанного с реагирующей функциональной группой. Полиэтерификация, например, может быть изображена в общем виде как реакция функциональных групп [c.57]

    При введении дополнительной порции гликоля в эквимолекулярную смесь его с двухосновной кислотой или добавлении одноатомного спирта увеличится количество групп ОН, 10 число карбоксильных останется без изменения. В результате снизится концентрация групп СООН, т. е. доля, которую они составляют по отношению ко всем функциональным группам. Аналогично упадет концентрация групп ОН при добавлении кислот. В том и другом случае это приведет к уменьшению знаменателя в выражении для константы равновесия, что вследствие постоянства К вызовет соответствующее снижение Ссоо- Другими словами, сократится число связей, соединяющих мономерные остатки между собой, что равносильно падению степени полимеризации продукта поликонденсации. Таким образом, правило неэквивалентности функциональных групп является прямым следствием равновесного характера реакции поликонденсации. [c.57]


    В соответствии с этим константа равновесия и, следовательно, мо лекулярная масса полимера мало зависят от температуры. Однако повышение температуры и концентрации мономеров сокращает время достижения наибольшей степени полимеризации. На практике иногда проводят поликонденсацию сначала при более высоких температурах, быстро достигая равновесия, а потом для дальнейшего увеличения молекулярной массы несколько охлаждают реакционную массу. Благодаря большей скорости поликонденсации при повышенных температурах может создаться впечатление, что степень полимеризации растет с увеличением температуры. Одна- [c.63]

    Теоретически рост макромолекул должен прекращаться, когда прореагируют все функциональные группы в молекулах мономеров и образуется одна макромолекула Практически продукт поликонденсацни состоит из достаточно большого числа молекул, отличающихся друг от друга по молекулярной массе (т е по степени полимеризации) Это объясняется обратимостью реакции поликонденсации, уменьшением подвижности макромолекул с увеличением их молекулярной массы, протеканием деструкционных процессов Для того чтобы сдвинуть равновесие реакции в сторону образования полимера, необходимо постоянно удалять из реакционной массы низкомолекулярный продукт Однако, если константа равновесия достаточно велика, в этом нет необходимости (иапример, реакция формальдегида с фенолами, карбамидом, аминами) Средняя степень полимеризации х имеет следующую зависимость от константы равновесия [c.23]

    Процесс поликонденсации, как и обычная конденсация характеризуется величиной константы равновесия К и константами скорости реакции. Если обе реакции являются реакциями второго порядка (см. гл. V, стр. 109), тогда фактическая скорость и-с образования продукта поликонденсации за промежуток времени т будет равна  [c.539]

    Для таких процессов,, как получение полиэфиров, константа равновесия примерно равна 4, а при получении феноло-формаль-дегидных смол /(=10 000. Следовательно, во втором случае равновесное состояние сдвинуто в сторону конечных продуктов и выделяющаяся в качестве побочного продукта вода почти не влияет на кинетику процесса поликонденсации. [c.539]

    Реакции образования. Поликонденсация фенола с формальдегидом — сложная совокупность последовательных и параллельных реакций. Наиболее типичные и многократно повторяющиеся — присоединение СНдО к фенолу (при этом получается феноло-спирт), а также к уже образовавшимся фенолоспиртам или олигомерам и конденсация фенолоспиртов с фенолом, олигомерами или между собой. Те и др. реакции практически необратимы (константа равновесия порядка 10 ООО). По- [c.356]

    Вторая группа примеров реакций линейной поликонденсации включает реакции веществ, реагирующих с константой равновесия в 1000 раз большей, чем для первой группы. Вследствие этого реакция может протекать в водных растворах, и величина молекулярного веса мало зависит от условий равновесия. [c.118]

    Тип поликонденсации Мономеры Константа равновесия К [c.428]

    В первой части обсуждены тенденции развития области поликонденсации. На базе современных данных проанализированы особенности равновесной и неравновесной поликонденсации, константы равновесия различных процессов, влияния на них строения исходных веществ, природы реакционной среды, температуры реакции, включая равновесие в таких новых, сложно протекающих процессах, как поликонденсация тетранитрилов ароматических тетракарбоновых кислот с диаминами. Проанализированы механизм и закономерности формирования макромолекул в процессах поликонденсации, в том числе формирования микроструктуры полимерной цепи в процессах сополикон-денсации (образование статистических и блок-сополимеров), получения полимеров, построенных по типу "голова к хвосту" и конформационно-специфической поликонденсации, с учетом химического строения исходных веществ, функциональности, реакционной способности функциональных групп, природы реакционной среды, возможных побочных процессов. Рассмотрена проблема разнозвенности поликонденсационных полимеров и показана необходимость ее познания для создания полимеров с желаемым комплексом свойств. Проанализированы данные о влиянии природы реакционной среды на физическую структуру синтезируемых поликонденсацией полимеров с жесткими цепями макромолекул и показаны возможные пути регулирования конформаций макромолекул в процессе синтеза. [c.4]

    В зависимости от абсолютного значения константы равновесия К различают равновесную (обратимую) и неравновесную (необратимую) поликонденсацию. Если в условиях реакции степень превращения и молекулярная масса получаемых полимеров определяется равновесными концентрациями реагентов и продуктов реакции, то такая поликонденсация называется равновесной или обратимой. Для обратимых реакций величины К лежат в интервале от нескольких единиц до нескольких десятков. Например, при полиэтерификации пентаметнленгликоля и адипиновой кислоты К = 6,0, а при полиамидировании СО-аминоундекановой кислоты К — 8,9. Прн /С > 10 степень превращения функциональных групп и молекулярная масса получаемого полимера лимитируется не термодинамическими, а кинетическими факторами. Такую поликонденсацию называют неравновесной или необратимой. Так, при поликонденсации диаминов с дихлорангидридами ароматических дикарбоновых кислот К Ю . [c.32]

    Поликонденсация — это многостадийный процесс, каждая стадия которого является элементарной реакцией взаимодействия функциональных групп. Постоянство константы равновесися К на всех стадиях поликонденсации, т. е. независимость ее от молекулярной массы соединения, в состав которого входит реагирующая функциональная группа, подтверждено многочисленными экспериментальными данными. Флори показал, что кинетика полиэтерификации аналогична кинетике этерификации монофункциональных соединений. Константа равновесия реакции образования полиэтилентерефталата равна 4,9 (при 280°С) и не зависит от молекулярной массы полимера. Константа равновесия реакции амидирования равна 305 (при 260°С). Принцип независимости свойств, связей и групп в макромолекулах одного полимергомологиче-ского ряда от молекулярной массы полимера лежит в основе современной химии высокомолекулярных соединений. (Исключение представляют лишь полимеры с системой сопряженных связей, см. с. 408.) [c.144]

    В табл. 2.1 в качестве примера приведены константы равновесия некоторых процессов поликонденсации и конденсации. Из них видно, что для таких классических случаев равновесной поликонденсации, как полиэтерификация и полиамидирование, константа равновесия составляет единицы. Такого же порядка константа равновесия для поликоординации [41, 43]. В случае неравновесной полиэтерификации константа равновесия выше 10 , для низкотемпературного образования полиамидокислот - более 10 л/моль, для образования полиамино-амидокислот - до 5 10 л/моль. [c.9]

    Все реакции, протекающие с выделением аммиака, являются обратимыми. Об этом свидетельствует тот факт, что при реакции макрогетероцикла V с аммиаком образуются соединения П-1У, а также диамин и 1,3-диимидоизоиндолин. Соединение I при аминолизе не образуется. Реакции (1) и (2) необратимы, так как установлено, что при выдерживании соединения II в феноле диамин не выделяется. Это дает основания полагать, что в процессе образования полигексазоцикланов поликонденсацией тетранитрилов ароматических тетракарбоновых кислот с диаминами на отдельных стадиях происходят реакции как равновесного, так и неравновесного характера. То обстоятельство, что даже при высоких температурах проведения процесса константы равновесия довольно высоки, позволяет считать, что общий вклад неравновесных стадий значителен. Однако и равновесные стадии, протекающие с выделением аммиака, надо учитывать для оптимизации процесса образования полигексазоцикланов. [c.15]

    На ранйих стадиях процесса в условиях равновесия число функциональных фупп, участвующих в реакции, остается неизменным, и тогда средняя степень поликонденсации прямо пропорциональна корню квадратному из константы равновесия и обратно пропорциональна корню квадратному из концентрации низкомолекулярного продукта реакции [c.45]

    В процессе изучения поликонденсации диметилсиландиола в присутствии НС1 Хрзопович и Лазоцким [143] было установлено, что она является реакцией второго порядка относительно силаидиола константа равновесия может быть вычислена по уравнению [c.287]

    Кроме того, пиридин играет роль акцептора образующегося в ходе реакции хлористого водорода. В данном случае связывание низкомолекулярного продукта поликонденсации акцептором не является необходимым условием получения полимера с высокой мол. массой, т. к. взаимодействие фосгена с бисфенолом — практически необратимый процесс (константа равновесия равна 10 —10 ). Иная картина наблюдается при взаимодействии дихлорангидридов дикарбоновых к-т с диаминами. Реакционная способность мономеров вполне достаточна для того, чтобы взаимодействие происходило без катализатора при достаточно низкой темп-ре, но применение акцептора хлористого водорода совершенно необходимо в противном случае хлористый водород взаимодействует с аминогруппами, превращая диамины в малореакционноспособные соли. Поэтому при полиамидировании в качестве растворителей применяют органич. соединения, обладающие свойствами оснований. Нек-рые из них (напр., N,14-диметилацетамид, гексаметилфосфортриамид, N-мeтилпиppoлидoн и др.) являются одновременно катализаторами поликонденсации. П. в р. указанного типа предложено называть акцепторно-каталитической поликонденсацией. [c.432]


Смотреть страницы где упоминается термин Поликонденсация константа равновесия: [c.21]    [c.133]    [c.74]    [c.9]    [c.12]    [c.185]    [c.62]    [c.28]    [c.434]    [c.28]    [c.117]    [c.117]   
Технология синтетических пластических масс (1954) -- [ c.3 ]




ПОИСК





Смотрите так же термины и статьи:

Константа равновесия

Равновесие константу, Константа равновесия



© 2025 chem21.info Реклама на сайте