Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы физической (структурной) модификации

    Модификацией имеющихся полимеров можно быстрее и экономичнее получить новые полимерные материалы. В промышленности используют следующие методы модификации 1) изменение химического строения макромолекул полимера (химическая модификация) 2) изменение физической структуры полимера без изменения его молекулярной массы и химического строения (структурная модификация) 3) применение смесей полимера с другими соединениями. Наиболее часто используется химическая модификация, которая осушествляется введением новых функциональных групп в молекулу полимера, введением новых звеньев в макромолекулу (синтез сополимеров) и получением привитых и блочных сополимеров, а также разветвленных и пространственных полимеров. [c.200]


    Все методы, предложенные для модификации свойств химических волокон или полученных из них изделий, могут быть разделены на две группы. К первой группе относят методы физической (структурной) модификации, ко второй — методы химической модификации. [c.147]

    Модификацией имеющихся полимеров можно быстрее и экономичнее получить новые полимерные материалы. В промышленности используют следующие методы модификации 1) изменение химического строения макромолекул полимера (химическая модификация) 2) изменение физической структуры полимера без изменения его молекулярного веса и химического строения (структурная модификация) 3) применение смесей полимера с другими соединениями. [c.547]

    Методы физической (структурной) модификации 149 [c.149]

    Было показано, что в родственных с целлюлозой соединениях существует система водородных связей, отдельные части которой взаимосвязаны друг с другом и которая весьма чувствительна к структурным факторам. Поэтому следовало ожидать существенного различия в построении водородных связей в разных структурных модификациях целлюлозы. Приведенные на рис. 2 спектры волокон природной целлюлозы и гидратцеллюлозы подтверждают этот вывод. Если каждой физической структуре соответствует свое особое построение водородных связей, то справедлив и обратный вывод — для получения соединения с новой структурой необходимо разрушение ранее существовавшей системы водородных связей. Действительно, гидратцеллюлозную структурную модификацию целлюлозы получают либо омылением высокозамещенных эфиров целлюлозы, либо размолом природных волокон, либо обработкой природной целлюлозы концентрированными щелочами. В последнем случае, как показано в работе [99], наблюдается сильное уменьшение интенсивности полосы гидроксилов, включенных в водородную связь. Следовательно, методы получения новых структур целлюлозы во многом определяются способами разрыва водородных связей. Поэтому производные целлюлозы, полученные в гетерогенных и гомогенных условиях (с сохранением и без сохранения волокнистой структуры), должны различаться не только химическими факторами, но и структурными особенностями. Это находит отражение и в различии водородных связей этих продуктов (рис. 3). [c.152]

    Методы физической (структурной) модификации 151 [c.151]

    МЕТОДЫ ФИЗИЧЕСКОЙ (СТРУКТУРНОЙ) МОДИФИКАЦИИ [c.147]


    Методы физической (структурной) модификации 153 [c.153]

    И физико-механических свойств полимерных изделий, т. е. разработать методы структурной (физической) модификации свойств полимерных тел. [c.13]

    Гидратцеллюлоза аналогична по составу исходной целлюлозе, отличается от нее расположением звеньев и большей степенью гидратации полярных групп. Гидратцеллюлоза получается двумя методами физическим и химическим. В первом случае целлюлозу растворяют и снова осаждают. Во втором путем полимераналогичной реакции целлюлозу переводят в одно из ее производных, затем последнее в результате реакции гидролиза вновь переводят в целлюлозу. Оба метода приводят к структурной модификации целлюлозы. Последним методом производится вискозное или медноаммиачное волокно -первое искусственное волокно, полученное человеком. Технология, разработанная в 20-30-х годах, включает две стадии. На первой - целлюлоза последовательно обрабатывается раствором щелочи и сероуглеродом  [c.362]

    В интересах точности не следует утверждать, что биологическая активность определяется каким-либо одним типом функциональных групп (например, фенольными или аминными группами и т. п.) правильнее считать, что данная функциональная группа или определенная часть функциональных групп одного или, возможно, нескольких типов участвует в создании структуры, обусловливающей биологическую активность. Именно эти специфические структурные соотношения можно успешно исследовать при помощи физико-химических измерений. Во-первых, если нельзя показать, что при деблокировании первоначально экранированных функциональных групп биологическая активность восстанавливается, то следует при помощи физических методов установить, что денатурация не имела места. Во-вторых, следует выяснить степень молекулярной и электрохимической гетерогенности производных в ее связи с критерием гомогенности биологической активности. В-третьих, необходимо учесть возможные неспецифические влияния модификации белка на его физическую структуру. Если с одним молем белка вступает в реакцию только один моль реагента, в результате чего образуется совершенно неактивное соединение (как это наблюдается в случае ДФФ-химотрипсина), то можно утверждать, что активность белка обусловлена только одной, хотя и неизвестной до сих пор [141 в], функциональной группой или одним участком белковой молекулы. Однако если интенсивное замещение или блокировка только уменьшают активность, то этот эффект, повидимому, не является специфическим и объясняется общим изменением суммарного заряда или микроскопическим перераспределением. Следует принимать во внимание также и стерические эффекты. В настоящее время большое разнообразие относительно специфических химических реагентов позволяет производить исследование как электростатических, так и стерических эффектов. Это можно сделать, обрабатывая белок, например, такими двумя реагентами, как кетен и недокись углерода, один из которых образует новую нейтральную функциональную группу, а второй превращает основную функциональную группу в группу с кислотными свойствами. Подобным же образом для введения в одно и то же положение положительного или отрицательного заряда, а также для исследования стерических затруднений можно применять диазосоединения. Для такого рода исследований можно воспользоваться целым рядом аналогичных комбинаций. [c.352]

    В основе методов, применяемых для исследования физических параметров жидкости на границах раздела фаз, лежат различные способы регистрации подвижности молекул, макроскопически проявляющейся в наличии градиента механических, оптических или электрических свойств жидкости в пристенной области. В этом плане механические методы наиболее полно отвечают задаче настоящего исследования - изучению модификация структурно-механических и гидродинамических свойств буровых растворов в пористой среде. В отличие от спек- [c.8]

    В простейшем виде идея этих методов состоит в такой структурно-физической модификации материала, которая подавляет молекулярную подвижность в полимере, особенно маломасштабные, высокочастотные движения, ответственные за химические реакции. Снижение молекулярной подвижности уменьшает химическую реакционную способность и повышает стабильность материала. Правда, такая модификация неизбежно сопровождается изменением релаксационного спектра полимера-и изменением механических, диэлектрических и других динамических свойств. Часто, однако, это обстоятельство не имеет решающего значения (например, в полимерных покрытиях магистральных трубопроводов). Кроме того, за химические реакции и динамические свойства ответственны различные частотные области релаксационного молекулярного спектра маломасштабные и высокочастотные движения важны для реакций, а более крупномасштабные и низкочастотные движения обеспечивают динамические свойства. Идеальной с точки зрения стабилизации является такая структурно-физическая модификация полимера, которая подавляет маломасштабные движения, но не затрагивает крупномасштабные это могло бы обеспечить и химическую стабильность, и сохранность динамических свойств. Конечно, такой идеальный результат трудно реализовать, однако возможности этого подхода к стабилизации еще мало исследованы. [c.148]


    Наконец, весьма продуктивным в практическом отношении и закономерным явился своеобразный сплав исследований в области структуры полимеров с исследованиями механических свойств, выразившийся в становлении и развитии В. А. Каргиным структурной механики полимеров. Эти работы открыли пути физической модификации свойств полимеров и изделий на их основе, а также послужили дальнейшему развитию химических методов модификации и придали им структурно-физический характер. [c.5]

    Принципиально стабилизацию полимеров можно осуществить двумя способами введением специальных добавок — стабилизаторов и модификацией физическими и химическими методами. Наряду с этим необходимо упомянуть так называемую структурную стабилизацию, смысл которой заключается во введении путем сополи-меризации в полимерную цепь большого количества стабильных структур . Структурная стабилизация, решаемая методами направленного синтеза, подробно в книге не рассматривается, однако в гл. IV приводятся некоторые патентные данные по этому вопросу. Полимерные структуры с особо высокой термостабильностью описаны в работах [77, 162, 228, 251]. [c.59]

    Известно, что методы модификации полимеров широко используются в промышленности пластических масс, эластомеров, резин, волокон и лаков. В последние годы эта проблема приобрела огромное значение [1], и в ее разрешении принимают участие специалисты различных направлений Актуальность модификации вытекает, очевидно, из того положения, что индивидуальные (чистые) полимеры и сополимеры различных типов являются, как правило, лишь начальной стадией формирования конечного полимерного продукта и должны быть одним из методов модификации превраш,ены в технически приемлемую для переработки многокомпонентную систему — полимерный материал, пластическую массу. Кроме того, модификация всегда предусматривает целенаправленное изменение (улучшение) комплекса первоначальных свойств высокомолекулярных соединений. Модификация может осуш,ествляться за счет химических, структурных (физических) или физико-химических иревра-ш ений. [c.127]

    В зависимости от того, какие п 5оцессы протекают при М. X. в., все методы, ведущие к направленному изменению свойств волокон, м. б. разделены на физические и химические (это соответствует общей классификации методов модификации полимеров — см. Модификация структурная. Модификация химическая). [c.136]

    Процессы поликонденсации проводятся в расплаве, в растворе и на поверхности раздела фаз. В последнем методе гетерогенной поликонденсации наблюдаются высокие константы скоростей реакции. Различными 1дКЮ методами поликонденсации получают по- 2,0 лиамиды, полиэфиры, полиуретаны, поликарбонаты и некоторые другие классы полимеров. Модификацией имеющихся полимеров можно быстрее и экономичнее получить новые полимерные материалы. В промышленности используют следующие методы модификации 1) изменение химического строения макромолекул полимера (химическая модификация) 2) изменение физической структуры полимера без изменения его молекулярной массы и химического строения (структурная модификация)  [c.223]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Один из способов регулирования физико-механических свойств полимеров — их молекулярная пластификация, т. е. введение низкомолекулярных веществ — пластификаторов, растворимых в полимерах. В. А. Каргин, П. В. Козлов, Р. М. Асимова и В. Г. Тимофеева впервые установили, что того же эффекта можно достичь введением малых количеств (порядка сотых долей процента) веществ, нерастворимых в полимере, но способных смачивать его поверхность. Это, например, касторовое масло, кремнийорганические жидкости, они резко снижают температуру стеклования и вязкость расплава полимера. Такой тип пластификации получил название структурной. Механизм структурной пластификации еще окончательно не выяснен, однако она нашла применение в качестве метода физической модификации пластмасс, каучуков, производных целлюлозы, лакокрасочных покрытий. У последних физическая модификация изменяет внутреннее напряжение и степень прилипания к металлу. [c.41]

    Рассмотрены технологические закономерности процессов ориентационного вы-тягявагия полиэфирных волокон. Варьирование температурных условий процесса создает возможность широкой структурной модификации волокна. Вытягивание вблизи и выше имеет существенные физические различия, связанные с различной интенсивностью релаксационных и кристаллизационных процессов, причем вытяжка выше позволяет получать более прочное волокно. Показано, что начальная упорядоченность волокна оказывает значительное влияние на структурообразование при вытягивании и в ряде случаев играет позитивную роль. Вытягивание в несколько стадий повышает прочность и равномерность нити. Одним из эффективных методов упрочнения является высокотемпературное вытягивание, в интервале 170—250° С. [c.323]

    За последние годы были созданы и получили значительное развитие методы регулирования физической структуры и свойств оолимерных тбЛ, называемые физической модификацией. Среди различных способов физической модификации, которые успешно прошли апробацию в лабораторных, опытных и промышленных условиях, следует назвать введение в полимер небольших количеств зародышей структурообразования, а также использование блок-сополимеров, воздействие на расплавы механических (в том числе ультразвуковых), магнитных и элелтри-ческих полей, варьирование температурно-временных режимов переработки и др. Методы физической модификации и стабилизации структуры полимеров выдвинули много интересных физических проблем, связанных с механизмами ориентационных процессов на молекулярном и надмолекулярном уровнях со структурным состоянием расплавов, находящихся в том или ином силовом поле, в частности при всестороннем сжатии под высоким давлением с процессами возникновения, роста, агрегации и распада различных надмолекулярных образований и др. [c.12]

    Структурные схемы подобного типа значительно облегчают принятие правильных решений для наут1н0 обоснованного построения неформальной, основанной на физической сугцности математической модели гетерогенно-каталитического процесса. Здесь уместно отметить, что существуют многие другие более простые в исполнении пути построения математических описаний каталитического процесса. К ним относятся, например, многочисленные модификации формального подхода с позиций черного ящика [1], всевозможные полуэмпирические методы, основанные на относительно неглубоком проникновении в физическую сущность объектов моделирования и др. В последнем случае опыт исследователя может оказаться достаточным для того, чтобы построенная полуэмпирическая модель отражала физическую сущность процесса, однако недостаточно глубокие знания могут привести к ошибочным результатам. Примером могут служить работы, где нестационарные процессы в неподвижном слое катализатора описываются весьма примитивно различными модификациями ячеечной модели [5—7]. [c.224]

    Первоначально единственной переменной при изучении полиморфных модификаций была температура вещество называют энантиотропным, если имеет место полиморфный переход при определенной промежуточной температуре, или монотроп-ным, если при атмосферном давлении одна форма устойчива при всех температурах. Обширная работа Бриджмена показала, что многие элементы (и соединения, например, лед) испытывают структурные изменения и под давлением, причем эти изменения были обнаружены по отсутствию непрерывности в таких физических свойствах, как удельное сопротивление и сжимаемость. В некоторых случаях структуры, характерные при высоком давлении, могут быть сохранены путем охлаждения в жидком азоте и изучены при атмосферном давлении с помощью обычных рентгеновских методов. В последние годы изучение полиморфных модификаций при высоком давлении в значительной степени продвинуто благодаря использованию новых приборов (например, тетраэдрической наковальни), которые не только увеличивают диапазон достижимых давлений, но позволяют также проводить рентгенографическое (или нейтронографическое) исследование фазы непосредственно в процессе изменения давления. Исследования галогенидов и оксидов в добавление к изучению элементов дали много новых примеров полиморфизма некоторые из них описаны в последующих главах. [c.20]

    Из того, что сказано в этой части книги, видно, какое огромное роистине революционизирующее влияние на развитие аналитической органической химии, а тем самым и всей органической химии оказали современные физические методы исследований. Совершенно очевидно, что они на некоторых участках аналитического исследования вытеснили, а на других продолжают теснить химические методы. Приведет ли этот процесс к полному изгнанию из аналитической органической химии этих методов Этот вопрос не раз обсуждался в печати. Указывалось, например, на то, что по-настоящему универсального (физического) метода структурного анализа ие открыто и на пути современных способов подхода к решению структурных проблем встречаются подводные рифы, еоли исследование ведется узким фронтом и предпочтение отдается одному какому-либо спектроскопическому методу , и что в случае сложных природных соединений исследования физическими методами и теоретические соображения должны быть дополнены деструктивным структурным анализом и в качестве последней решающей инстанции, подтверждающей все прежние выводы, — синтезом [56, с. 230]. Не в этом ли ценность занявших столько лет труда знаменитых синтезов Вудворда и, в частности, синтеза витамина В12 Терентьев указал на другую сторону того же вопроса о взаимоотношении физических и химических методов анализа. Эти методы дополняют друг друга хотя бы потому, что исследуемое вещество должно быть сначала подготовлено для анализа. Пример для того чтобы подвергнуть данное вещество спектрополяриметрическому изучению, в нем должна быть проведена химическим путем избирательная модификация определенной функциональной группы (метод меток, о котором шла речь в гл. XI, 3). Иногда химический метод может дать ответ быстрее, чем требуется времени на специальную подготовку [c.319]

    Рассматриваются новые методы физико-химической и механо-химической модификации, позволяющие активно влиять на физическую и химическую структуры полимеров (эффект зародышеобразования, структурная ориентация, графитизация и др.). Обсуждается вопрос об эффективности комбинированных методов модификации. Приводятся данные об осмотическом и биологическом методах модификации некоторых природных полимеров. [c.230]

    Изменения плотности, электропроводности и других физических свойств при плавлении показывают, что расплавы многих из этих элементов обладают более металлическим характером и их структуры имеют более высокие координационные числа, чем кристаллические модификации, устойчивые ниже точки плавления [5]. Изменение удельной электропроводности при плавлении показано на рис. 109. Значения энтропии плавления для них также гораздо выше, чем для истинных металлов, что указывает на отчетливо выраженное изменение структуры при плавлении [11]. Однако изменение структуры не заканчивается при температуре, немного превышающей точку плавления. Температурная зависимость атомного объе ма, электропроводности и магнитных свойств мышьяка показывает, что хотя структурный переход в значительной степени н происходит в интервале между точкой плавления (818°) и 850°, он не завершается даже при 1000°. Более легко этот переход происходит в случае 5Ь и В1. Исследование структуры расплавленных 51 и Ое методом дифракции рентгеновских лучей свидетельствует, что углы между связями не отклоняются от тетраэдрического столь сильно, как в белом олове. Таким образом, на структуру расплава в большей или меньшей степени влияют направленные ковалентные связи, ответственные за сетчатое или высокополимерное строение кристаллических модификаций. [c.262]

    Физические методы, используемые в совокупности с кинетическими, должны быть полезны в выяснении механизма отдельных стадий реакции — поверхностных реакций, которые происходят в течение периода индукции и приводят к образованию зародышей и которые неизбежно сопровождаются различными модификациями свойств поверхности твердого реагента. Эти изменения можно обнаружить с помощью измерений электропроводности, магнитной восприимчивости или потенциала поверхности, а также с помощью магнитного резонанса или инфракрасной снектрофотометрии. Физические методы могут оказать также большую помощь при разрешении некоторых частных, теоретически важных проблем, например, речь идет об изучении строения реакционной поверхности раздела, об изучении структурных связей, которые существуют между твердыми веществами, ограничивающими эту поверхность раздела, или даже просто о непосредственном определении ее площади. Эти вопросы находятся на стадии исследования. В частности, очень полезно было бы узнать, в каких случаях точка контакта между реагентом и продуктом его реакции может играть роль зародыша, имеет ли в таком процессе значение структурное соответствие (эпитаксия). [c.455]


Смотреть страницы где упоминается термин Методы физической (структурной) модификации: [c.365]    [c.138]    [c.222]    [c.84]    [c.57]   
Смотреть главы в:

Основы химии и технологии химических волокон Том 1 -> Методы физической (структурной) модификации




ПОИСК





Смотрите так же термины и статьи:

Методы физические

Структурная модификация

Структурно-физические метод



© 2025 chem21.info Реклама на сайте