Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксиды, гидроксид-оксиды и кислоты

    На практике приходится встречаться и с эквивалентами сложных веществ оксидов, гидроксидов (оснований), кислот, солей. [c.47]

    Полимерные гидроксиды, оксиды кислоты [c.64]

    ОКСИДЫ, ГИДРОКСИД-ОКСИДЫ И КИСЛОТЫ [c.250]

Таблица 19. Оксиды, гидроксид-оксиды и кислоты олова и свинца Таблица 19. Оксиды, <a href="/info/183681">гидроксид-оксиды</a> и <a href="/info/64224">кислоты олова</a> и свинца

    К первому относятся металлокомплексные соединения переходных металлов (Ре, Со, N1, Си, Мп, Мо) и в качестве лигандов к ним — соединения хелатного типа (шиффовы основания, дитиофосфаты, дитиокарбаматы, р-дикетоны), имеющие в своем составе атомы Ы, 8, О, Р. Выбор лигандов обусловливается термоокислительной стабильностью (при 150—280°С) соединений, полученных на их основе. Для повышения их растворимости в нефтяных фракциях [0,1-"8% (масс.)] применяют комплексы, содержащие олеофильные заместители (алкильные, алк-оксильные или ароматические). К второму типу относятся Ыа-, К-, Ы-, Mg-, Са-, Зг- и Ва-соли карбоновых, дитиофосфорных и дитиокарбоновых кислот. Третий тип металлсодержащих ингибиторов окисления включает сульфиды, оксиды, гидроксиды и соли, диспергированные в нефтепродуктах при 150—250 °С с помощью ультразвука и другими методами. К четвертому типу противоокислителей относятся почти все перечисленные металлсодержащие производных алкилароматических аминов, замещенных фенолов и хинонов. Такие композиции присадок эффективны и в синтетических маслах на основе сложных эфиров при температуре до 250—260°С. В ряде случаев использование этих композиций позволяет получить присадки полифункцио-нального действия. [c.94]

    В табл. 13—16 приведены способы получения и химические свойства оксидов, гидроксидов, кислот и солей. [c.34]

    Разложение гидроксидов. В стакан возьмите 10—15 мл раствора сульфата меди (II) и прибавьте при перемешивании 10 %-й раствор гидроксида натрия до образования обильного голубого осадка. Раствор с осадком доведите до кипения. При этом наблюдайте образование черного осадка оксида меди (II). Осадок промойте несколько раз горячей водой (декантацией), отфильтруйте на воронке Бюхнера и вновь промойте водой. Осадок высушите и изучите его свойства. Взаимодействует ли он с концентрированными растворами щелочей, аммиака, азотной и соляной кислот как на холоду, так и при нагревании. Напишите уравнения реакций. [c.56]

    Основными называются оксиды, взаимодействующие с кислотами (или с кислотными оксидами) с образованием солей. Присоединяя (непосредственно или косвенно) воду, основные оксиды образуют основания. Например, оксид кальция СаО реагирует с водой, образуя гидроксид кальция Са(ОН)г  [c.30]

    АЦЕТАТЫ — соли и эфиры уксусной кислоты. А. металлов хорошо растворяются в воде образуются при растворении оксидов, гидроксидов или карбонатов металлов в разбавленной уксусной кислоте. А. широко применяют при крашении тканей, в медицине, для борьбы с вредителями растений, приготовления катализаторов и т. п. [c.35]


    Из сложных веществ составляют основные классы неорганических соединений — оксиды, гидроксиды, кислоты и соли, а также многочисленные комплексные основания, кислоты и соли (см. гл. 9). Вопросы классификации веществ рассматриваются также при изучении химической связи и строения молекул (см. V). [c.33]

    Углекислый газ обладает всеми свойствами кислотных оксидов. Однако вследствие того что соответствующий ему гидроксид — угольная кислота очень неустойчива, при растворении в воде СОг практически с ней не взаимодействует. Так как в СОг углерод,имеет степень окисления +.4, то гореть или поддерживать горение он не может. Для него не характерны ни окислительные, ни восстановительные свойства, хотя некоторые активные металлы могут гореть в атмосфере СОг, отнимая у него кислород  [c.246]

    Природа отобрала и хранит в земной коре наиболее устойчивые соединения так, алюминий встречается в виде оксида, гидроксида и силикатов, кальций — в виде карбоната (жесткие кислоты связаны с жесткими основаниями), а медь, ртуть и другие -элементы — обычно в виде сульфидов (мягкие кислоты связаны с мягкими основаниями). [c.245]

    Мягкие кислоты связывают мягкие основания за счет ковалентных связей, жесткие кислоты связывают жесткие основания за счет ионной связи с образованием устойчивых соединений. Это обстоятельство используется в практических целях. В частности, она объясняет, почему алюминий встречается в природе в виде оксида, гидроксида и силикатов, кальций —в виде карбоната медь, ртуть — в виде сульфидов. Металлы переходных элементов VIH группы периодической системы, как мягкие кислоты, катализируют реакции, в которых принимают участие умеренно мягкие основания (оксид углерода). Другие более мягкие основания (соединения мышьяка и фосфора) служёт каталитическими ядами, так как они образуют более прочные соединения с этими металлами и блокируют их активные центры. Этим же объясняется ядовитость СО для человека. СО образует с Ре (II) гемоглобина крови более устойчивое соединение, чем кислород. Аналогичную роль играют ионы тяжелых металлов (РЬ +, Hg + и др.), которые, взаимодействуя с SH-группами физиологически важных соединений, выключают их функцию. [c.287]

    Все вещества делятся на простые и сложные. Простые вещества состоят из одного элемента, сложные — из двух (бинарные соединения) и более элементов (многоэлементные соединения). Важнейщими классами неорганических соединений являются оксиды, гидроксиды (основания), кислоты и соли. [c.26]

    Будучи во многом формальным, понятие степени окисления все же широко используется при описании изменений, происходящих с элементом в ходе химических реакций. Следовательно, это дает удобный способ класс ификации и описания соединений элемента. Из множества соединений, известных для элементов в различных степенях окисления, я счел нужным по возможности привести здась формулы оксидов, гидроксидов или кислот, гидридов, фторидов и хлоридов ("и т.д." после хлоридов означает ooTBeT TByrauj,ne бромиды и иодиды), а таюке формулы частиц, существующих в водных (aq) растворах солей элемента. Приведены также формулы характерных солей, комплексов и металлоорганических соединений в других случаях указано ишь, что такие соединения существуют (детали можно найти в работах [7-9]). [c.9]

    В промышленности и лаборатории оксиды элементов подгруппы IIA получают не из металлов, а термическим разложением их кар натов или гидроксидов. Оксид бария ВаО удобно также получать нагреванием нитрата. Оксиды ЭО - твердые, тугоплавкие соединения. Их химическая активность увеличивается при переходе от ВеО к ВаО. На компактный оксид ВеО при комнатной температуре не действуют вода, кислоты и щелочи MgO легко реагирует с кислотами СаО бурно взаимодействует не только с кислотами, но и с водой ВаО еще более реакционноспособен. [c.332]

    Оксиды, гидроксиды и кислоты. Оксиды многих металлов имеют вакансии в узлах решетки либо кислорода, либо металла. Так, у FejtO (дс 0,84 - 0,96) появление каждой катионной вакадсии на месте иона Fe сопровождается образование двух ионов Fe в двух других узлах для компенсации зарядов. [c.510]

    В многоядерных комплексах молекулы воды и ОН-группы могут замещгться на имеющиеся в растворе анионы. Все это объясняет причигу сложного состава соединений, образующихся при химических реакциях в водных растворах. Так, при взаимодействии оксидов или гидроксидов с кислотами образуются не средние соли, а соответствующие оксо- и гидроксопроизводиые, например типа ЭОХ (где X =С1-, Вг-, 1-, N0 , У 2 50Г)  [c.535]

    Оснбены.чи называются оксиды, которые образуют соли при взаимодействии с кислотами или кислотными оксидами. Основным оксидам отвечают основания. Например, оксиду кальция СаО отвечает основание гидроксид кальция Са(0Н)2 оксиду кадмия dO — гидроксид кадмия d(0H)2- [c.31]


    HNOз — сильная кислота. Ее соли — нитраты получают действием HNOз на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Их растворы обладают незначительными окислительными свойствами. [c.410]

    Свойства гидроксидов (оксид-гидрокспдов) определяются характером электроположительного элемента. Гидроксиды активных металлов являются основаниями, т. е. акцепторами протонов. По мере уменьшения активности металлов, а особенно при переходе к неметаллическим элементам свойства их гидроксидов (оксид-гидроксидов) непрерывно изменяются происходит переход от типичных оснований к амфотерным соединениям и к кислотам, т. е. донорам протонов. В основных гидроксидах электроположительный элемент с кислородом связан ионной связью, а водород с кислородом — ковалентной. В кислотных гидроксидах, наоборот, связь кислорода с электроположительным элементом ковалентная, а с водородом — нонная или, во всяком случае, сильно полярная. Амфотерные гидроксиды обладают промежуточными свойствами. Изменение состава и характера гидроксидов (и оксид-гидроксидов) элементов можно видеть на примере соединений элементов третьего периода системы Д. И. Менделеева  [c.127]

    Образование нересыщенного раствора илн нара при. химической реакции может происходить в результате химического взаи.модей-ствия двух исходных веществ или разложения одного вещества. К реакциям первого тина относятся получение элементарных металлов, оксидов, гидроксид.ов и других соединений металлов из их растворимых солей н соответствующих реагентов, синтез солей аммония из аммиака и парообразных кислот, гидратация и гидролиз различит,IX иоиов н соединений как в жидкой водной среде, так и парами воды в воздухе, К реакциям второго тнна относится, наиример, фотохимическое разложение некоторых металлорганн-ческих С едниеипй. [c.191]

    Гидроксид алюминия А1(0Н)з образуется в виде белого студенистого осадка в результате обменной реакции между растворами его соли и щелочами. При осторожном высушивании этого осадка получается порошок, обладающий высокой адсорбционной способностью. Пр[ более сильном нагревании гидроксид алюминия теряет молекулу воды и переходит в оксид-гидроксид А1(0Н)0, а при прокаливании — в оксид. Гидроксид алюминия — амфотерное соединение с нреобладаиием, одиако, основных свойств. Будучи нерастворимым в воде, он легко растворяется в кислотах и щелочах. В носледнем случае образуются легко растворимые гидроксоалю-минаты  [c.254]

    AG = —500,8 кДж/моль), а также ири обжиге сульфидов. Этот оксид германия — белое вещество, существующее в двух полиморфных видоизменениях a GeOo тетрагональной сингонии, ири Ю49"С переходит в = Ge02 тригональной сингонии температура плавления 1П6°С, температура кипения 2350°С плотиость 0,24 г/ем . В воде плохо растворяется с образованием гидроксидов— германиевых кислот, в кислотах не растворяется, с растворами щелочей взаимодействует с образованием солей — германа- ГОВ. [c.363]

    Лекция < 0, Оксиды, гидроксиды, кислоты. Метопы получения. Характер изменения свот ств в периодической таблице. Химические сво йствя. Применение в не тепереряботке. [c.181]

    Гидроксид железа имеет значительные основные свойства, что обусловливает положительный заряд его поверхности вплоть до нейтральной области pH. Особенно заметно сказывается pH среды на изменении знака и величины заряда поверхности амфотерных оксидов. Нанример, оксид алюминия в кислой среде имеет иоло жительно заряженную поверхность, а в щелочной среде она заряжена отрицательно. Подобным образом возникает двойной электрический слой и на поверхности между водой и органическими жидкими электролитами, которые могут быть кислотами (органические кислоты), основаниями (амины, четвертичные аммониевые основания) или иметь те и другие функциональные группы (ам-фолиты). [c.63]

    Очищенные отработанные масла или базовые масла вторичной переработки все щире применяются в производстве пластичных смазок. Фирма MOR (Великобритания) производит смазки с использованием последних из отработанных индустриальных масел. В СНГ также ставится вопрос о расщирении сырьевой базы и вовлечении в производство пластичных смазок продуктов вторичной переработки ОМ. Установлена возможность использования в производстве смазок регенерированного технологического масла для процессов холодной прокатки металлов. Такой продукт представляет собой смесь нефтяных масел, растительных или животных жиров и жирных кислот. Последние (4—30%) являются жировым омыляемым сырьем для приготовления мыльного загустителя при производстве смазки. В качестве омыляющих ai HTOB можно использовать оксиды, гидроксиды или карбонаты натрия, лития, бария, алюминия и других металлов. В качестве компонентов дисперсионной среды используют свежие нефтяные или синтетические масла. Для повыщения качества смазок применяют различные присадки. [c.314]

    В многоядерных комплексах молекулы воды и ОН-группы могут замещаться на имеющиеся в растворе анионы. Все это объясняет причину сложного состава соединений, образующихся при химических реакциях в водных растворах. Так, при взаимодействии оксидов или гидроксидов с кислотами образуются не средние соли, а еоот- [c.503]

    Перекисные соединения для лития малохарактерны. Однако для него известны пероксид Ь1202. персульфид и перкарбид Ь12Сг. Оксид лития Ь120—белое твердое вещество. Получается взаимодействием простых веществ. Активно реагирует с водой, образуя гидроксид. С кислотами, кислотными и амфотерными оксидами образует соли. [c.588]

    Получение оксида меди (II). К подогретому раствору сульфата меди (2—3 мл) прилейте горячий 5 %-й раствор гидроксида натрия до полного осаждения оксида меди (II) (новые порции едкого натра не вызывают появления осадка). Смесь перемешайте и нагревайте 3—5 мин. Что наблюдается Осадок отфильтруйте на стеклянном фильтре и промойте водой. Испытайте его взаимодействие с разбавленными кислотами НС1, H2SO4, HNO3. Запишите наблюдения и уравнения реакций. [c.270]

    Гидроксид алюминия — типичный амфотерный гидроксид. С кислотами он образует соли, содержаш ие катион алюминия, со щелочами — алюминаты. При взаимодействии гидроксида алюминия с водными растворами щелочей или при растворении металлического алюминия в растворах щелочей образуются, как уже говорилось выше, гидроксоалюминаты, например, На[А1(0Н)4]. При сплавлении же оксида алюминия с соответствующими оксидами или гидроксидами получаются метаалюминаты — производные метаалюминиевой кислоты НАЮз, например  [c.402]

    НИТРАТЫ — соли азотной кислоты, устойчивы при обычных условиях. Образуются при взаимодействии HNO с металлами, оксидами, гидроксидами солями. Н. хорошо растворяются в воде применяются как удобрения, протра вы при крашении. Н. органические при меняются как взрывчатые вещества в медицине. [c.175]

    Наличие фазово-выраженного оксида или другого соединения не исключает адсорбционного механизма пассивности. Вместе с тем возникновение пленок существенно изменяет условия взаиглодействия между металлом и электролитом, в том числе и адсорбционное взаимодействие. Пленка может образоваться также в результате пересыщения раствора в прианодной зоне плохо или хорошо растворимым соединением и его кристаллизации на аноде. Возможно также образование и кристаллизация гидроксида, оксида или основной соли на аноде в результате миграции ионов водорода из прианодного слоя. Так, на поверхности свинцового анода в серной кислоте во время электролиза образуются кристаллические зародыши твердой фазы РЬ804, которые разрастаются в сплошной изолирующий слой. Толщина этого слоя тем меньше, чем больше п.потность тока и концентрация серной кислоты, т. е. чем больше факторы, обусловливающие пересыщение. [c.367]

    Кислород содержат очень многие соединения (оксиды, гидроксиды, кислоты, соли, орп нические соединения). Кислородсодержащие вещества рассматриваются при наложении химии каждого элемента. В данном разделе описаны только его соединения с водородом - Н2О и Н2О2. [c.430]


Смотреть страницы где упоминается термин Оксиды, гидроксид-оксиды и кислоты: [c.51]    [c.113]    [c.250]    [c.487]    [c.107]    [c.438]    [c.70]    [c.96]    [c.166]    [c.154]    [c.358]    [c.64]    [c.432]   
Смотреть главы в:

Неорганическая химия -> Оксиды, гидроксид-оксиды и кислоты




ПОИСК





Смотрите так же термины и статьи:

Гидроксиды

Классификация и номенклатура неорганических соединеСвойства и способы получения оксидов, кислот, гидроксидов и солей

Напишите химические реакции, которые могут происходить между следующими веществами алюминий, оксид кремния, карбонат натрия, гидроксид натрия, серная кислота

Оксид-гидроксид

Оксиды. Гидроксиды (основания). Кислоты. Соли Классификация неорганических веществ



© 2025 chem21.info Реклама на сайте