Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фуран ароматичность

    Также ароматичными являются такие гетероциклические соединения, как фуран, тиофен, имеющие в цикле по шесть тг-электронов, или нафталин, у которого в двух конденсированных циклах имеется 10 тс-электронов. [c.149]

    Фурановое кольцо содержит достаточно реакционноспособные двойные связи. Пониженная ароматичность фуранового кольца приводит к тому, что фуран легче, чем тиофен и пиррол, вступает в реакции присоединения. Например, при каталитическом гидрировании фуран превращается в тетрагидрофуран  [c.358]


    Фуран, пиррол и тиофен вступают в реакции электрофильного замещения с большей легкостью, чем бензол, тогда как пиридин и хинолин вступают в эти реакции труднее бензола. По сравнительной легкости, с которой эти гетероциклические -соединения и бензол вступают в указанный тип реакций (нитрование, сульфирование, галоидирование),, их можно расположить в следующий ряд, в котором слева от бензола располагаются соединения, обладающие большей ароматичностью и легче, чем бензол, вступающие в эти реакции, а справа—соединения, вступающие в них труднее бензола  [c.56]

    С позиций метода валентных связей фуран рассматривается как резонансный гибрид канонических структур (1) — (5). Направление диполя в молекуле фурана (0,72 Д) в противоположность распространенным ошибочным взглядам таково, что отрицательный заряд сосредоточен на атоме кислорода, который, таким образом, индуктивно оттягивает электроны кольца. То же наблюдается в случае тиофена, но не в случае пиррола [3]. Для фурана было выполнено много расчетов по методу МО, но их результаты расходятся в широких пределах [4]. Значения энергии резонанса фурана, определенные термохимическими методами, составляют 66—96 кДж/моль [5]. Валентные углы и длины связей для тиофена, пиррола и фурана были определены методом микроволновой спектроскопии. В качестве критерия ароматичности было использовано соотношение длин 2,3- и 3,4-связей, но обоснованность этого подхода подвергалась сомнению. [c.117]

    Для сравнения ароматичности бензола, тиофена, пиррола и фурана был использован также ряд методов, основанных на спектроскопии ЯМР [5] определение индуцированного кольцевого тока, определение химических сдвигов, обусловленных разбавлением [6] и заменой растворителя, а также определение экзальтации магнитной восприимчивости. На основе этих данных было установлено, что ароматичность изменяется в ряду бензол > тиофен > > пиррол > фуран. [c.117]

    Фуран вследствие его ароматичности ведет себя в отличие от [c.134]

    Оксазолы и тиазолы представляют собой бесцветные вещества, растворимые в воде. Подобно фурану, тиофену, имидазолу, в молекулах оксазола и тиазола образуется циклическая замкнутая сопряженная система, содержащая бл-электронов. Возможна стабилизация сопряженной системы в результате циклической делокализации я-электронов (системы ароматичны )  [c.683]

    Большие значения дипольного момента у пиррола, тиофена и пиридина по сравнению с фураном (табл 26-1) соответствуют большему вкладу биполярных предельных (резонансных) структур, большей делокализации гг-электро-нов, усилению ароматичности в ряду [c.892]

    БыЛо предложено [97] за критерий ароматичности, названный индексом кольцевого тока, принять наименьший из полных (л +б) порядков связей системы, рассчитанных одним нз полуэмпирических методов МО с оптимизацией ге ометрии. Рассмотрение приводимых значений для отдельных соединений обнаруживает ряд противоречий с данными экспериментальных критериев. Так, пиразол оказывается неароматическим соединением, а фуран ароматичнее не только пиразола, но и ими-дазола (ср. табл. 1.3).  [c.32]


    Высокая ароматичность в химическом понимании, т. е. склонность к реакциям электрофильного замещения в ядрк гетероциклических аналогов циклопентадиенильного аниона (XVII) (фуран, тиофен, пиррол, селенофен, теллурофен), объясняется тем, что 2р.- [c.268]

    Гетероциклические системы. Явление ароматичности не ограничивается карбоциклическими соединениями. Замещение какого-либо из углеродных атомов в перечисленных выше соединениях на другие атомы дает новые ароматические системы при условии, что я-электронная система не изменяется. Замещение СН-групп в бензоле на изоэлектронный (т. е. содержащий такое же число электронов) азот приводит к образованию серии гетероциклических ароматических соединений пиридин, пиридазин, пиримидин и пиразин. Возможно и дальнейшее замещение. Во всех этих соединениях циклическая бя-электрон-ная система ( ароматический секстет ) использует по одному электрону от каждого атома кислорода и азота, оставляя по свободной паре электронов на р -орбитали каждого азота на месте бензольной связи С—Н. В результате эти гетероциклические соединения обладают слабоосновными свойствами, основность свободной электронной пары на р -орбитали значительно меньше, чем свободной пары на 5рЗ-орбитали (ср. С—Н-кислотность в алканах и алкинах, разд. 8.2.1). Циклопен-тадиенид-анион можно также рассматривать как родоначальное карбоциклическое соединение серии гетероциклических ароматических соединений. Фуран и тиофен имеют ароматический секстет, в котором по одному электрону дают каждый из четырех углеродных атомов (т. е. две двойные связи), а два электрона являются свободной парой кислорода или серы. В пирроле [c.306]

    Рейтц (194, 195) на основании изучения раман-спектров фурана, тиофена и пиррола приплел к заключению, что по своему характеру молекула фурана диолефиновая Из сравнения раман-спектров сделан вывод, что степень ароматичности по изменению характеристической этиленовой связи уменьшается в ряду бензол, тиофен, пиррол, фуран. [c.25]

    Сам фуран, так же как и другие пятичленные гетероциклы, дает отчетливую тонкую (бензольную) структуру в области 250 тр,, причем интенсивность длинноволновых полос, сравнительно с ациклическими диенами, очень невелика. Это, по мнению Гиллема и Штерн (200), отражает ароматичность указанных гетероциклов. [c.25]

    Фуран представляет собой гетероциклическое соединение низ- -кой ароматичности и высокой реакдионноспособности по отноше-нию к реакции галогенирования. Хлорирование даже при —30 °С С приводит к образованию различных полихлорзамещенных продук- I-тов и некотрых продуктов присоединения [69]. С другой стороны,, 1, наличие в положении 2 фурана электроноакцепторной группы ы (примерами могут служить- фуран карбоновая кислота, а-ацетил- ге-фуран или фурфурол) стабилизует кольцо и оно способно выдержать гь галогенирование в самых жестких условиях (пример 6.6). Замеще-ние происходит преимущественно в положение 5. Галогенирование тиофена (пример 6.5), имидазола и пиразола идет легко, однако пир- о-рол под действием кислых реагентов или кислых побочных продук- -тов полимеризуется. Тем не менее индол, один из бензпирролов, э, удовлетворительно бромируется лод действием бромгидрата пер--р-бромида пиридиния [70] [c.457]

    До сих пор не вполне ясны причины, по которым в фуране а-положение имеет более отчетливые преимущества перед р-положением, чем в тиофене и пирроле. Эти особенности фурана, возможно, связаны с образованием промежуточных соединений в результате 2,5-присоединения, что в свою очередь может быть следствием их более низкой активности по отношению к электрофилам (см. стр. 324) и более слабой ароматичности. [c.211]

    Изоиндол, как и индол, относится к я-избыточным ароматическим гетероциклам, однако говорить о близкой аналогии в свойствах этих двух изомерных систем нельзя. По электронному строению и свойствам изоиндол близок изобензофурану (бензо(с)-фурану) [302] и изобензо-тиофену [374]. Эти три системы образуют особую группу так назьгоае-мых о-хиноидных гетероциклов. Среди них изоиндол, безусловно, наиболее интересное и важное соединение. Обсуждение результатов, полученных при исследовании изоиндола, иногда требует оригинального подхода, не применявшегося ранее в ряду других ароматически гетероциклов. Большие трудности, например, возникают при рассмотрении вопроса об ароматичности изоиндола. Традиционный подход здесь оказался неэффективным. Проблеме ароматичности изоиндола и других о-хиноидных гетероциклов в монографии посвящен специальный раздел. [c.5]

    Винильная группа, связанная с шестичленным гетероциклом, будет иметь иную полярографическую активность, нежели группа, связанная с пятичленным гетероциклом. Пятичленные гетероциклы (тиофен, фуран, пиррол) можно рассматривать как производные бензола, у которого группа —СН = СН— замещена гетероатомом (5, О, Ы), способным поставлять, благодаря гибридизации два электрона в ароматический секстет. Это обусловливает относительно высокие значения энергии сопряжения (в кДж/моль) у тиофена—117, у пиррола 100, у фу-рана — 52. Так как в этих гетероциклах неподеленная пара электронов гетероатома участвует в сопряжении с двойной связью —С = С, то пониженная плотность электронного облака наблюдается на гетероатоме (по сравнению с С-атомами). При этом а-углеродный атом имеет большую электронную плотность, чем находящиеся в -положении по отношению к гетероатому. Особенности распределения электронной плотности в пятичленных гетероциклах сказываются определенным образом и на полярографической активности винильной группы в их винилзамещенных. Винилтиофен и винилфуран на фоне 0,05 М N( 2H5)4I в диметилформамиде образуют волны с - 1/2=—2,312 и —2,449 В соответственно [179]. При сравнении потенциалов полуволн а-винилфурана и а-винилтиофена видно, что винильная группа в первом восстанавливается труднее, чем во втором. Из эффектов, влияющих на полярографическую активность органических молекул, тут следует учитывать, по крайней мере, два а) индукционный эффект самого гетероцикла, определяющего статическую полярность молекул и, в первую очередь, состояние электронного облака на винильной группе б) подвижность я-электронной системы в винильном производном, что связано со степенью ароматичности соответствующего гетероцикла, и способность молекул поляризоваться в электрическом поле электрода. [c.127]


    Больший атомный радиус серы — один из факторов, обеспечивающих большую стабильность (ббльшую ароматичность) тиофена по сравнению с фураном и пирролом, поскольку углы связей в тиофене больше, и вследствие этого в некоторой степени снимается угловое напряжение. Кроме того, существенный дополнительный вклад в стабилизацию тиофена может вносить -орбиталь атома серы. [c.22]

    Гетероциклы, подобные пиридину, в которых электронная плотность на атомах углерода понижена, называются л-дефицитны-ми гетероциклическими соединениями. К ним относятся пиридин, пиримидин, пиридазин, пиразин, катионы пирилия и тиопирилия, триазины и др. Пятичленные гетероциклы (пиррол, фуран и тиофен) можно рассматривать как я-избыточные ароматические системы. Индексы ароматичности ЭДОЭ для некоторых гетероциклов приведены в табл. 12.2. Согласно этому критерию, 5-членные гетероциклы менее ароматичны, чем бензол, но пиридин и хинолин по ароматичности сравнимы с бензолом. [c.370]

    Того, лектроотрицательность гетероатомов изменяется в следующем ряду кислород > азот > сера, поэтому резонансные струк-typы VI—IX вносят меньший вклад в случае фурана по сравне нию с пирролом и тиофеном (кислород менее склонен отдавать Вою электронную пару) и, следовательно, фуран является найме- ароматичным из этих трех гетероциклов  [c.98]

    Виниловые эфиры и амины имеют малую склонность к сохранению структуры так, при действии электрофильного агента первоначально образующийся продукт реакщ1и взаимодействует с нуклеофильной группой и образует продукт присоединения (пример 207->210). Тиофен и пнррол имеют высокую степень ароматичности (энергия сопряжения 31 ккал1моль, как измерено по теплотам сгорания) и, следовательно, при взаимодействии с электрофильным агентом первоначальный продукт реакции отщепляет протон и в результате ароматизации дает продукт замещения (пример 211 214). Фуран имеет менее ароматический характер (энергия сопряжения 23 ккал/моль) и одинаково часто присоединяет реагент и взаимодействует по схеме замещения. Ароматичность бензольного ядра ослаблена в 3,4-бензопроизводных (215), которые нестойки и обычно наряду с замещением вступают в реакцию присоединения, тогда как 2,3-бензопроизводные (216) являются устойчиво ароматическими соединениями. Однако 3-замещенные индолы иногда взаимодействуют с электрофильными агентами в положении 3 с образованием индоленннов (217) (ср. стр. 173). [c.165]

    Ориентация. Пиррол, фуран и тиофен обычно замещаются исключительно в а-иоложении переходное состояние, ведущее к а-замещеиию (218), очевидно более устойчиво, чем переходное состояние, ведущее к р-замещению (219). Склонность к а-заме-щению выражена более резко если а-положение свободно, то замещение обычно происходит независимо от влияния присутствующих заместителей. Исключение из этого правила составляют индол и тиоиафтен, которые обычно замещаются в -положении (220) здесь переходное состояние для а-положения связано с нарушением ароматичности бензольного ядра. Интересно, что бензофуран замещается в а-положении (220). Имеются и другие примеры замещения в р-положении (см. стр. 167). Пирроколин, как и следовало ожидать, замещается в пиррольном ядре (221). Если оба а-положения свободны или они заняты, но свободны оба р-поло-жения, то замещение зависит от природы уже присутствующих заместителей (222, 223). [c.167]

    Фуран в большинстве случаев разлагается при галогенировании, но с бромом происходит последовательное превращение по схеме (240—243), что иллюстрирует пониженную ароматичность фурана. Производные фурана, стабилизованные электроноакцепторными группами, галогенируются более гладко фуран-2-карбо-новая кислота бронируется последовательно в положения 5 и 4 (ср. 238), а фуран-З-карбоновая кислота — в положение 5. Бензофуран дает продукты присоединения (244) с хлором и бромом, но не с иодом. Продукт присоединения брома при нагревании или обработке спиртовым раствором едкого кали превращается соответственно в 2- и 3-бромбензофуран. [c.169]

    На основании всех критериев ароматичности, включая и те, которые здесь не обсуждаются, азабензолы, показанные на рис. 2.3, можно отнести к ароматическим соединениям, степень стабилизации которых подобна или несколько меньше степени стабилизации для бензола. Бензоконденсированиые гетероциклы такого типа характеризуются несколько более низкой стабилизацией. Степень делокализации в пятичленных гетероциклах зависит от природы гетероатома. Фуран — гораздо более локализованная система, чем пиррол или тиофен. [c.38]

    Концепцию ароматичности первоначально связывали со стабильностью бензола и отличием его реакционной способности от реакционной способности типичных ациклических полиенов. Существует традиционная точка зрения, что ароматические соединения склонны к сохранению ароматичности, т. е. вступают в реакции замещения, а не присоединения или раскрытия цикла. Эта точка зрения имеет силу, так как склонность к сохранению циклической системы в процессе реакции обусловлена большей стабильностью такого состояния. Реакционную способность, однако, нельзя рассматривать как критерий ароматичности, так как она зависит от разницы энергий основного н п )еходного состояний. Например, на основании критериев, обсуждаемых в разд. 2.2, пиррол можно считать более ароматичным, чем фуран, однако пиррол более реакци-онноспособея по отношению к электрофилам. Это обусловлено тем, что атом азота с неподеленной парой электронов гораздо легче поляризуется, чем атом кислорода, поэтому атом азота легче отдает электрон. Силабензол (рис. 2.5) можно привести в качестве примера гетероциклического соединения, имеющего значительный ароматический характер, однако по многим признакам он обладает высокой реакционной способностью соединение впервые удалось получить на аргоновых матрицах при 10 К. Его можно назвать неактивным только по сравнению с соединениями, содержащими изолированные т-связи углерод — кремний. [c.41]

    По отношению к злектрофилам тиофен проявляет меньшую реакционную способность, чем фуран, и гораздо меньшую, чем пиррол, ио он значительно более активен, чем бензол (фактор скорости 10 — 10 ). Реакции электрофильного замещения, следовательно, предпочтительны для тиофенов. Из-за своей повышенной ароматичности тиофеи скорее вступает в реакции замш ения, чйл присо-единшия, и не подвержен столь быстрому раскрытию цикла под действием кислот, как фуран. Ъюфен устойчив по отношению к водным растворам минеральных кислот, но неустойчив при взаимодействии со 100%-ной серной кислотой и сильными кислотами [c.258]

    Тиофен как более ароматичный, чем фуран и пиррол, и устойчивый в кислой среде легко сульфируется 95%-ной Н2804 при комнатной температуре [c.900]

    К пятичленным ароматическим гетероциклическим соединениям с одним гетероатомом относятся пиррол, фуран н тиофен. Ранее было показано соответствие этих соединений критериям ароматичности (см. 2.2). Однако степень их ароматичности ниже, чем у классического ароматического соединения — бензола. Это связано с электроотри-Цательностью гетероатомов в рассматриваемых гетероциклах, в результате Чего не может быть полного выравнивания электронной Плотности по всем атомам цикла, как это характерно для бензола. [c.357]

    Как и следовало ожидать, более ароматичный тиофен ацилируется легче, чем фуран. Тиофен ацетилируется с хорошим выходом в 2-ацетил-тиофеп в присутствии комплексного соединения BFg с уксусной кислотой, а также таких катализаторов, как Sn l , Fe lg. Хлористый алюминий плохо активирует ацетилирование тиофена, а его молекулярные соединения с этиловым эфиром и нитрометаном вообще пе активируют эту реакцию [151]. [c.271]

    Так как введение СМг-группы между заместителем и ядром исключает мезомерные эффекты, но сохраняет / -взаимодействие с реакционным центром, то естественно допустить, что именно этот тип электронных влияний имеет наиболее существенное значение для понимания механизма проводимости электронных влияний в гетероциклических системах рассматриваемого типа. Это подтверждается также наблюдением [78], согласно г<оторому повышение электронной проводимости Б указанном ряду соответствует падению ароматичности в том же ряду. Действительно, характеризующие степень ароматичности величины энергии л-электронной делокализации понижаются от бензола к фурану [83], а это, очевидно, облегчает передачу / -эффекта. [c.260]

    Теплота гидрирования бензола, равная 49,8 ккал1моль, на 36 ккал1моль меньше, чем теплота гидрирования изолированной двойной связи в цикло-гексене, умноженная на три. Эта разница называется энергией стабилизации [7] и служит мерой ароматичности кольца. Такая высокая степень стабилизации возможна только благодаря планарности кольца. Ароматичность присуща гетероциклам, таким, как пиридин она также проявляется в пятичленных гетероциклах, например в тиофене, фуране и пирроле, в которых структурная единица углерод — углерод замещена атомом, обладающим неподеленной парой электронов. [c.20]

    Фуран, тиофен и пиррол (I X = О, S, NH) обладают в значительной степени ароматическим характером вследствие делокализации четырех л-электронов углеродных атомов и двух спаренных элек-тдонов гетероатома. При этом фуран, содержащий наиболее электроотрицательный гетероатом, имеет наименьшую ароматичность [c.74]

    ЮТ соединения по их ароматичности, обеспечивают единую непрерывную- шкалу, позволяют в случае полициклических соединений оценивать как систему в целом, так и отдельные ее циклические фрагмент . К ограничениям относится неприменимость к симметричным системам. При сопоставлении двух вариантов структурных нндекеов видно, что расположение ео--единений по степени ароматичности в целом сходно, хотя в ряде случаев соотношения ароматичностей не совпадают, иногда существенно. Так, согласно индексу Пожарского, фуран в й раз, а фосфол в 12 раз менее ароматичны, чем бензол, тогда как согласно индексу Берда — всего в 2,3 и 2,8 раза соответственно по первой шкале 1,2,4-триазол ароматичнее тетразо-ла, а 0 второй шкале — наоборот. Поскольку оба индекса базируются на одном и том же массиве данных и отличаются только/ способом их математической обработки, качественные расхождения неоправданны, По-видимрму, требуется дальнейший анализ с целью унификации. [c.32]

    В отличие от гетероциклов пиридинового типа пятичленные гетероциклы вступают в реакции электрофильного ароматического замещения только в некоординированном виде, так как связывание неподеленной пары электронов гетероатома кислотой приводит к нарушению ароматичности (см. гл. 1). Фуран (56а) особенно чувствителен к присутствию следов кислот. Не только с Н2304 или ЗОз, но и с диоксансульфотриоксидом он дает смолообразный продукт, с комплексом триметиламин — 30 не взаимодействует, и лишь избытком пиридинсульфотриоксида (54) в дихлорэтане при 100 °С сульфируется в фуран-2-сульфо-кислоту (57а) с выходом до 90%. В тех же условиях 2-метил-фуран превращается в З-метилфуран-2,4-дисульфокислоту, [c.196]


Смотреть страницы где упоминается термин Фуран ароматичность: [c.316]    [c.143]    [c.69]    [c.102]    [c.55]    [c.119]    [c.231]    [c.677]    [c.494]    [c.225]    [c.286]    [c.366]    [c.23]    [c.75]    [c.39]   
Общая органическая химия Т.9 (1985) -- [ c.117 ]

Теоретические основы органической химии (1964) -- [ c.458 , c.459 ]

Введение в электронную теорию органических реакций (1977) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматичность

Фуран



© 2025 chem21.info Реклама на сайте