Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

алкилирование обмен

    В присутствии сильных оснований проводят реакции различного типа, такие, как С-, 0-, Ы-алкилирование, изомеризация, Н/О-обмен, присоединение, а- и р-элиминирование, гидролиз и многие другие. [c.54]

    По 5 2-механизму протекают также сульфирование, алкилирование и водородный обмен в ароматических соединениях. [c.170]

    ОБМЕН АЛКОКСИЛЬНЫХ ГРУПП ОРТОЭФИРОВ И РЕАКЦИИ АЛКИЛИРОВАНИЯ [c.33]


    За объем катализатора должен быть принят объем кислоты, диспергированной в реакторе, так как остальная ее часть, попадающая в зону отстоя или не образовавшая эмульсии из-за недостаточно интенсивного перемешивания, фактически не будет катализировать алкилирование. Однако учесть этот объем невозможно, и в данном случае условная объемная скорость выражается объемным количеством олефинов, подаваемым в час на единицу объема катализатора. Объемная скорость в значительной степени зависит от интенсивности перемешивания реакционной массы, особенно в местах ввода олефинов. Недостаточный массо-обмен вызывает местные перегревы реакционной смеси и снижение качества алкилата. Средняя объемная скорость подачи олефинов для сернокислотного алкилировання 0,1—0,6 ч .  [c.290]

    Полимеризация изобутилена протекает весьма просто. При других алкенах, например пропилене или бутене-1, протекают более сложные реакции, в том числе перегруппировка, деструктивное алкилирование, расщепление (крекинг), изомеризация и т. д., которые следует детально рассмотреть/ Равным образом алкилирование изобутана бутенами с образованием алкилата также связано с многочисленными сложными реакциями, протекающие через промежуточные карбоний-ионы. По такому же механизму протекают и реакции изомеризации, например получения изобутана из м-бутана. Некоторые детали этих процессов будут рассмотрены дальше. Здесь достаточно лишь указать на убедительные доказательства ионного механизма реакций углеводородов. Обмен изотопами водорода между серной кислотой и алканами изостроения можно объяснить только, если постулировать легкое протеканий обмена между дейтерием катализатора и водородом исходного углеводорода [3, 68]. [c.170]

    Легче всего подвергается обмену (наиболее подвижен) атом иода, что связано с его большой поляризуемостью, однако алкилиодиды относительно дороги и могут быть использованы поэтому лишь в лабораторных синтезах. Хлориды и бромиды мало различаются по реакционной способности, и поэтому в промышленных синтезах предпочитают использовать более доступные хлористые алкилы. Фтористые алкилы для целей алкилирования не пригодны, так как фтор вследствие малой поляризуемости слишком инертен. [c.81]

    Теперь, разобравшись с механизмом алкилирования в условиях МФК, перейдем к рассмотрению механизма генерирования дигалокарбенов. Мы тщательно изучим все факты, относящиеся к генерированию дихлоркарбена, однако полученные выводы равным образом будут применимы ко всем карбенам, образующимся при межфазных реакциях. Проведение конкурентных реакций показало, что дихлоркарбен, генерируемый при МФК, идентичен дихлоркарбену, получаемому другими методами [2, 29], и не является карбеноидом. Кроме того, можно показать, что в условиях МФК карбен СХ может, обменивая галогены, превращаться в СХг и С 2. Надо добавить, что в отличие от всех других методов генерирования дигалокарбенов при МФК реакция проходит при комнатной температуре как необратимый быстрый одностадийный процесс. В то врем как смесь трег-бутилата калия с хлороформом реагирует при —20 °С независимо от присутствия или отсутствия субстрата, а Ь1СС1з распадается обратимо даже при такой низкой температуре, как —72 °С, реакционная смесь, используемая в МФК — хлороформ/конц. МаОН/катализатор, — в том случае, когда отсутствует реактант, взаимодействующий с карбеном, сохраняет свою способность давать СС12 даже при комнатной температуре в течение нескольких дней. Поскольку между хлороформом и концентрированным раствором ЫаОО/ОгО наблюдается очень, быстрый Н/О-обмен, который происходит и без всякого катализатора, то первой стадией должно быть депротонирование на границе раздела фаз. Предположительно при этом образуется двойной слой того же типа, что и обсуждавшийся выше  [c.61]


    Эти соли полезно использовать в качестве МФ-катализатора в тех случаях, когда анион катализатора должен переходить в органическую фазу намного хуже, чем реагируюш,ий анион (по терминологии Брендстрёма такой процесс называется препаративная экстракция ионных пар). Изо всех обычных анионов наиболее подходящими являются бисульфат и хлорид. Во многих случаях можно использовать бромиды, однако применение иодидов часто вызывает трудности, особенно в тех случаях, когда в реакцию вводят алкилиодиды, что вызывает образование в ходе реакции дополнительных количеств иодид-ионов. При этом наблюдается отравление катализатора, которое состоит в том, что весь катализатор экстрагируется в форме иодида в органическую фазу и реакция останавливается. Так же как и в случае гомогенных реакций с предварительно полученной аммониевой солью, в системах с иодидами большую роль может играть ионный обмен. Следует подчеркнуть, что такой обмен в большинстве типичных МФК-реакций не является необходимым. Однако в некоторых реакциях в присутствии катализаторов добавление небольших количеств иодида ускоряет процесс иодид обменивается с галогенидом в алкилирующем агенте, делая его более активным (КХ+1 —Таким способом можно влиять на соотношение С/О-изомеров, образующихся при алкилировании амбидентных анионов (см., например, [1716]). [c.82]

    Различия в составе изомеров в опытах с серной кислотой и хлоридом алюминия, по-видимому, объясняются конкуренцией между скоростями внутримолекулярных гидридных переносов и реакции алкилирования. Образующиеся в присутствии серной кислоты вторичные метилциклогексилкарбониевые ионы с большей скоростью превращаются в наиболее устойчивые третичные карбокатионы, которые атакуют ароматическое кольцо, в то время как в присутствии хлорида алюминия скорость реакции алкилирования значительно выше скорости внутримолекулярной изомеризации. Проведение экспериментов с [1- С]метил-циклогексаном в присутствии серной кислоты и хлорида алюминия подтвердило предположение о наличии межмолекулярного гидридного переноса в условиях реакции алкилирования выделенные 1,1- и 1,3-метилфенилциклогексаны радиоактивны (табл. 4.12). Это свидетельствует об обмене между промежуточ- [c.121]

    Фиксация положительного заряда на незамещенном бензиль-ном атоме углерода при отщеплении гидрид-иона от полиметиленового фрагмента бензилиндана сопровождается алкилированием фенильного кольца с образованием углеводорода I. Последующее расщепление связи Саг—Сдш пятичленного цикла приводит к обмену между фенильной и фениленовой группами 1-бензилиндана. [c.170]

    V При производстве этил-, пропил- или додецилбензолов редакционную массу алкилирования бензола олефинами в присутствии хлорида алюминия очищают от катализатора водно-щелочной обработкой при температуре 10—20°С. Многократная промывка дает значительный объем сточных вод. Так, при производстве 1 т алкилбензола получается 10—12 сточных вод.- Чтобы уменьшить количество последних и полностью извлечь катализатор из реакционной массы процесса, предложено использовать ионообменные смолы/ КУ-2 в Н+ и натриевой формах, анионит АВ-Г6-ТС в ОН- форме [248], анионообменные смолы АВ-17, катионообменные ткани в Н+форме, анионо-обменные ткани в ОН-, РО= б-формах [249]. [ Эти материалы являются эффективными ионообменными сорбентами при очистке алкилатов от хлоридов алюминия. При времени контакта 10—12 мин, температуре 60—70°С коэффициент. извлечения хлорида алюминия практически составляет 100% (в статичес ких условиях). Экспериментальные данные, полученные в динамических условиях, показали, что максимальная объемная скорость подачи алкилата не должна превышать, 9—10 м /м ионита, так как возможен механический унос последнего. Применение ионообменных тканей и нетканых материалов позволяют в 2—3 раза повысить объемные скорости потока при 100%-ном извлечении. [c.261]

    В слу чае синтеза эфиров, когда смолы выполняют функниго катализатора реакции алкилирования, об их эффективности трудно судить только по значению обменной емкости. Поэтому в технические условия для катализаторов синтеза эфиров дополнительно введен показатель активность , определяемый по реакции дегидратации третбутанола. Однако он является косвенным и не отражает реальных каталитических свойств смол в реакции образования эфиров. [c.90]

    Амберлист 15 в Na-форме (получен ионным обменом с NaOH) иопользовали для определения участия ионов Н+ из НгЗОз-группы в алкилировании. Опыты проводили при 40 °С, объемной скорости подачи олефина 2,6 ч и соотношении изобутана к бутилену, равном 5 1. Результаты приведены ниже  [c.75]

    Алканы можно алкилировать, обрабатывая их растворами устойчивых карбокатионов [162] (см. т. 1, разд. 5.2). Как правило, при этом получается смесь продуктов, поэтому реакцию не использовали в препаративных целях. В типичном эксперименте при обработке пропана изопропилгексафтороантимонатом (МегС+ЗЬРб ) получается 26 % 2,3-диметилбутана, 28 % 2-ме-тилпентана, 14 % 3-метилпентана и 32 % -гексана, а также некоторое количество бутанов, пентанов (образующихся по реакции 12-46) и высших алканов. Отчасти смесь образуется благодаря межмолекулярному обмену водорода (КН-]-К +ч= К+-Ь + К Н), который намного быстрее алкилирования, так что продуктами алкилирования оказываются также производные новых алканов и карбокатионов, образующихся при реакции обмена. Кроме того, присутствующие в реакционной смеси карбокатионы подвержены перегруппировке (см. т. 4, гл. 18), в результате которой возникают новые карбокатионы. Таким образом получается смесь продуктов, представляющих собой сочетание всех имеющихся Б системе углеводородов и всех карбанионов. Как и следует ожидать на основании относительной устойчивости, [c.441]


    Исследованы пути получения энергонасыщенных соединений на основе производных 1,2,5-оксадиазола. Оптимизация метода получения 3,5-ди(4-амино-1,2,5-оксадиазол-3-ил)-/Я-1,2,4-триазола (I) позволила поднять выход до 90%. Обменной реакцией Na-соли соединения (I) получен ряд неорганических солей, которые предложены как катализаторы горения смесевых композиций. Нитрование соединения (I) привело к соответствующему динитроаминовому производному. Изучается алкилирование этого соединения. [c.151]

    Быстрое достижение равновесия изомерных бутенов при условиях процесса алкилирования подтвет)ждается результатами изучения алкилирования изобутана 2-бутеном в присутствии меченной тритием серной кислоты при 10 [32]. Реакции алкилирования предшествует перераспределение атомов водорода и трития в олефине и катализаторе. Кроме того, тритий — водородный обмен происходит и при барботаже 2-бутена через меченную тритием серную кислоту при условиях, ведущих к незначительной абсорбции олефина. Это указывает не только на быстрое протекание тритий — водородного обмена, но и на обратимую абсорбцию олефина в кислоте. [c.184]

    Наиб, подробно изучены моноциклич. Ф.г. Насыщенные моноциклич. Ф.г. во многом напоминают по св-вам соответствующие ациклич. соединения. Так, соед. УШ и IX проявляют примерно одинаковую склонность к окислению, суль-фуризации, алкилированию. Оба реагируют со спиртами с разрывом связи Р —N. Однако ациклич. соед. легко обменивает на алкоксил все три амидогруппы, а циклические -только одну (экзоциклическую) др. фуппы также могут принимать участие в обмене, но в более жестких условиях. [c.161]

    Гомогенные реакции (процессы) I/I158 4/415 5/465. См, также Гомогенные системы алкилирование 2/380 газификации твердых топлив 1/881 газофазные 1/1158 2/850, 851 гидрирование 2/670 3/84, 737 гидролиз 2/340 горение 1/1169, 1170 детонация 2/46, 67 диеновый синтез 2/101, 102 н реология 4/487 и эффект клетки 2/810, 811 изотопный обмен 2/387, 388 каталитические 1/1158-1161 2/688-691, 756, 757 5/333, 712, 713. См. также Гомогенный катализ [c.585]

    Однако опыты по выяснению участия ь атализатора в процессе переноса водорода (с чем связана сама реакция алкилирования) показалп, что между изобутаном и серной кислотой обмен водородными атомами происходит в очень незначительной степени. Наоборот, при контакте кислоты с бутилом обмен водорода происходит весьма быстро. Опыты проводились с серной кислотой как катализатором, причем была взята радиоатстивная серная кислота, сотгержащая вместо водорода радиоактивный изотоп водорода — [c.360]

    Обмен галогена в алкилгалогениде путем нуклеофильного замещения (реакция Финкельщтейна) Алкилирование эфира -кетокарбо-новой кислоты Гидролиз -кетоэфира до -кето-карбоновой кислоты с последующим декарбоксилированием (кетонное расщепление) [c.597]

    Поэтому с учетом условий, благоприятствующих растворимости, обмен атомов галогенов обычно вполне успешно осуществляется в полярных апротонных растворителях, если только термодинамические факторы способствуют реакции [77 ]. Основность по отношению к атому углерода в отличие от нуклеофильности по отношению к атому углерода в полярных апротонных растворителях [17, 77] соответствует ряду Ыз>Р >С1 , S N" > Вг" > 1 другими словами, иодид-ион замещается у атомов углерода в ароматическом кольце и у насыщенного атома углерода всеми галогеноидными (псевдогалогенными) ионами. Реакции алкилиодидов с механизмом 5jvr2 протекают быстрее, чем такие же реакции других алкилгалогенидов, и наиболее чувствительны к замене протонного растворителя полярным апротонным [12]. Иодид и тозилат относятся к числу групп, которые наиболее легко замещаются при алкилировании. [c.39]

    Реакции обмена галогена на литий обычно осложняются конкурирующими процессами алкилирования и (или) металлирования, а также реакциями, протекаюи1,нмн с участием функциональных групп. Интересно, что обмен металл — галоген легко протекает при низких температурах (обычно реакцию проводят при -78 X, но довольно часто даже при —100 °С), когда конкуриру- [c.14]

    Обмен групп К между тризамещенными аланами и другими металлорганическими соединениями наблюдается редко, особенно если оба соединения имеют только алкильные заместители. Наиболее эффективные методы алкилирования менее электроположительных металлов включают реакции соответствующих галогенидов металлов нли алкоксидов с триоргаиоаланами или их комплексами с соединениями щелочных металлов. [c.132]

    Из-за трудностей получения реагентов Гриньяра в ряду фурана они вытеснены более удобными литиевыми соединениями. При действии бутиллития фуран легко обменивает атом водорода в положении 2 на литий [102]. С помощью бутиллития может быть осуществлен и обмен галогена на литий. При действии диизопропиламида лития на галогенфураиы при —70 °С происходит исключительно обмен на литий а-атома водорода [103]. Литиевые производные при действии соответствующих реагентов подвергаются обычным реакциям карбонизации, формилирования и алкилирования при обработке хлоридом меди (И) [104] они вступают в реакции конденсации (схемы 35—41). [c.140]

    В процессе алкилирования кроме моноэтилбензола (этилбензола) образуются TaKMie ди-, три- и полиалкилбензолы (ПАБ), вплоть до гексаэтилбензола. Каталитический комплекс MOMi T вступать в обменную реакцию с ПАБ, что приводит к их деалкилированию. [c.112]

    Алкилирование аминосоединений может быть достигнуто также в результате обменной реакции переаминирования . Сущность метода состоит в вытеснении одного основания другим в условиях, способствующих смещению равновесия. Например, метилмочевину получают при действии солянокислого метиламина на мочевину. Сдвигу равновесия способствует использование большого пабытка мочевины [c.173]

    Степень алкилирования, %, . . Статическая обменная емкость, ыг-экв/г по 0,1 н. раствору НС1. . . по 0,1 н. раствору Na l. , Удельное объемное электрическое сопротивление в 1 и.ЫС1, Ом-м Селективность, % [c.136]

    При получении арен-циклопентадиенплъных производных железа конкурирующей реакцией является разрушение ферроцена хлористым алюминиелг и алкилирование отщепляющимся циклопентадиеном [5]. В присутствии достаточно активного арена этот побочный процесс идет в незначительной степени, но все же идет. Алкилированные ферроцены,, в свою очередь, претерпевают обмен лиганда и дают трудноотделидп.ге примеси. [c.63]


Смотреть страницы где упоминается термин алкилирование обмен: [c.327]    [c.58]    [c.356]    [c.25]    [c.98]    [c.120]    [c.187]    [c.191]    [c.20]    [c.123]    [c.30]    [c.270]    [c.682]    [c.1095]    [c.192]    [c.49]    [c.132]    [c.326]    [c.547]    [c.60]   
Химия гетероциклических соединений (2004) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Обмен алкоксильных групп ортоэфиров и реакции алкилирования

Реакции алкилирования, обмена, присоединения и полимеризации



© 2025 chem21.info Реклама на сайте