Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фаза ошибка

    Зависимость растворимости газов в жидкостях от давления. Если газ химически не взаимодействует с растворителем, то зависимость растворимости газа в жидкости от давления выражается законом Генри. Для идеальных растворов закон Генри может быть выражен уравнением (128.7). Закон Генри справедлив только тогда, когда растворение газа в жидкости не связано с процессами диссоциации или ассоциации молекул растворяемого газа. Расчет растворимостей газов по уравнению (128.7) при высоких давлениях приводит к ошибкам, если не учитывать зависимость коэффициента Генри от давления. Характер изменения растворимости некоторых газов от давления в воде при 298 К показан на рис. 126. С изменением давления газа растворимость различных газов меняется неодинаково и подчинение закону Генри (128.7) наблюдается лишь в области невысоких давлений. Различие в растворимости газовых смесей и чистых газов в жидкости определяется взаимным влиянием отдельных газов друг на друга в газовой фазе и взаимным влиянием растворенных газов в жидкой фазе. При низких давлениях, когда взаимное влияние отдельных газов невелико, закон Генри справедлив для каждого газа, входящего в газовую смесь, в отдельности. [c.383]


    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    Очевидно, что и сам объем фаз и их соотношение в условиях проведения реакции отличаются от таковых, рассчитанных по подачам или загрузкам реагентов. Поэтому надо уметь их определять. Проще всего это было бы осуществлять визуально, однако так удается делать достаточно редко, при работе без давлений, да и то в основном на системе жидкость — жидкость. Приходится искать другие пути. Одним из них является постановка специальных исследований по определению изменения объема фаз в ходе реакции в условиях равновесия, но при отсутствии взаимодействия. Однако такие исследования даже более сложны, чем изучение кинетики. Кроме того, исключить взаимодействие, сохранив полностью условия равновесия, можно только в гетерогенно-каталитических реакциях при постановке опытов без катализатора. Вследствие этого приходится либо расчетным путем определять объем фаз, исходя из молекулярных объемов их компонентов (часто тоже расчетных) и из постулата аддитивности этих объемов в растворе, либо ориентировочно оценивать при помощи метки. Последний прием заключается в том,что в одну из фаз дается инертная метка, не влияющая на ход реакции, например бензол, полихлорид бензола и т. н., в зависимости от реакции. Определяя содержание метки в каждой пробе и зная общее количество метки, можно рассчитать объем фазы. Можно давать метку и в газовую фазу в виде гелия или аргона. Однако при давлениях — 100 кгс/см и выше растворимость этих газов довольно заметна даже для повышенных температур, что вносит ошибку в расчеты. Все же газовая метка удобнее, поскольку в ряде случаев отбор газовой пробы удается осуществить из работающего аппарата установкой в нем специальных отбойников. [c.72]


    Рассмотрим ограничения, накладываемые на выполнение формулы аддитивности, более подробно. Выполнение условия равновесия (4.5) на границе раздела фаз у большинства исследователей не вызьшает сомнения, поскольку процессы, протекающие на поверхности раздела фаз при физической абсорбции и экстракции — сольватация, десольватация, изомеризация и т. п., имеют скорости, значительно превышающие скорость массообмена. Однако в ряде работ по массообмену в аппаратах с плоской границей раздела фаз и с механическим перемешиванием в каждой из фаз авторы обнаружили отклонение от формулы аддитивности, обусловленное, как они предположили, поверхностным сопротивлением. В работе [221] приведен критический обзор основньгх исследований, в которых, по мнению авторов, было обнаружено поверхностное сопротивление в системах жидкость - жидкость. В этих работах частные коэффициенты массоотдачи определялись косвенным методом с погрешностью, большей чем отклонение от формулы аддитивности. Кроме того, в некоторых работах обнаружены методические ошибки. Для проверки формулы аддитивности требуются более точные методы определения частных коэффициентов массоотдачи (см. раздел 4.4). Поверхностное сопротивление массотеплообмена мало изучено. Одним из возможных механизмов является экранирование поверхности поверхностно-активными веществами (ПАВ) [222-224]. К обсуждению роли поверхностного сопротивления мы будем возвращаться в последующем изложении. [c.171]

    Иначе обстоит дело в случае систем, включающих полярную жидкость и хотя бы один диэлектрик или вакуум. На рис. 1У.14 показаны величины относительных ошибок А = ( 7 — 7 ) / 7 и А = ( 7 7 — / 7 в функции lg Я для ряда таких систем вода—вакуум—вода (кривые 1 и 2 ), полистирол—вода—полистирол (кривые 2 и 2 ), вода—тетрадекан—вода (кривые 3 ж 3 ) и вода—тетрадекан—вакуум (кривые 4 и 4 ). Для этих систем использование уравнения (IV.23) приводит к большой ошибке даже в области малых расстояний между телами. Так, для прослоек тетрадекана между водными фазами ошибка достигает 70% (кривая 3) даже при Я 100 А. Для несимметричной системы ошибка стремительно нарастает при Я 100 А (кривая 4). [c.90]

    Хорошее перемешивание реагирующих фаз при высоте рабочей зоны колонны около 15 м делает малоэффективной установку в колонне устройств, предназначенных для дополнительного перераспределения внутренней циркуляции потоков газа и жидкости. Были проведены сопоставительные испытания двух промышленных колонн диаметром 2,2 м и высотой рабочей зоны 14—15 м одна из колонн была пустотелая, другая — снабжена рассекателями, представляющими собой смонтированные под углом 45° к горизонтальной плоскости и расходящиеся из центра стальные пластины. Сравнение сделано для битумов с температурой размягчения по КиШ, равной 53 4 °С, при температуре окисления 280 5°С и расходе воздуха 3400 100 м /ч. В результате установлено отсутствие значимой разницы между средними квадратичными ошибками и средними значениями измерений содержания кислорода в испытуемых колоннах (оценка по критериям Фишера и Стьюдента). Следовательно, эффективность обеих колонн одинакова [82]. [c.59]

    Неподвижная фаза . % Ошибка, % Вклад ад- [c.52]

    Основные виды переноса, учитываемые при расчете проницаемости пористых мембран (концентрационная и кнудсенов-ская диффузии в газовой фазе, поверхностное течение в адсорбированной пленке и фильтрационный перенос в газовой фазе) обычно считают в первом приближении независимыми и вычисляют по среднему значению градиента давления и при среднем значении давления и состава газовой смеси. Это вносит ошибку, однако интегрирование дифференциального уравнения конвективной диффузии в гетерофазной системе, при учете всех механизмов переноса практически невозможно. Таким образом, проницаемость пористой мембраны вычисляется по уравнению  [c.64]

    Было установлено, что когда отступление от беспорядочного распределения настолько велико, что жидкая система находится накануне разделения на две фазы, ошибка, даваемая уравнением (34), составляет всего около 150/о. [c.398]

    Чем "меньше концентрация исследуемого раствора, тем больше становятся относительные ошибки в определении состава равновесных фаз. Ошибки связаны с уносом летучего растворенного вещества из раствора в процессе установления равновесия и с улетучиванием вещества в ходе анализа паровой и жидкой фаз. Поэтому возникают дополнительные требования к конструкциям [c.151]

    В применении к углеводородным системам в этих уравнениях без большой ошибки можно полагать поровый объем постоянным [9, 33]. Можно, однако, получить более точные результаты, если считать, что поровый объем представляет собой линейную функцию состава адсорбированной фазы, изменяющуюся в пределах значений Ур для компонентов данной бинарной истомы. Значение у, рассчитанное только по. величине Ур для лучше адсорбируемого компонента, применяется в этом расчете в качестве первого приближения. [c.139]

    Приближенное выражение (7.78) иногда используется для расчета реакторов в случае, когда изменение концентрации по высоте существенно не равно нулю (32, 33]. Однако это может привести к большим ошибкам при вычислении высоты реактора, так как поток массы из транспортной фазы меняется по высоте реактора за счет изменения величин х и 1 1. [c.122]


    Однако задача описания химического равновесия в паре для рассматриваемого случая взаимодействия может быть решена и при значительно более ограниченном объеме исходных данных, а именно, когда известны зависимость аналитического состава пара от состава жидкой фазы и величины давлений насыщенного пара компонентов Рд и Рв- В этом случае (15) должно быть проинтегрировано (практически это осуществляется с помощью ЭВМ). Интегрирование предполагает варьирование параметра Кр таким образом, чтобы вычисленная величина Рв при заданной величине Рд в пределах ошибки эксперимента совпала с опытным значением. [c.147]

    Вторые вириальные коэффициенты чистых компонентов Вц и В и вириальные коэффициенты смеси компонентов г и ] — В , зависящие от объема, могут быть вычислены по экспериментальным данным. Если такие данные относительно просто получить для чистых компонентов, то значительно сложнее это выполнить для смесей. Поэтому в практике расчетов чаще всего используются эмпирические соотношения для расчета вириальных коэффициентов. Изменение коэффициентов активности при нормальном давлении сравнительно мало сказывается при расчете равновесия и поэтому невысокая точность эмпирических соотношений для расчета вириальных коэффициентов вносит незначительную ошибку в расчет равновесия. Тем не менее, лучше воспользоваться приближенными формулами, нежели принимать до-пуще.ние об идеальности паровой фазы. [c.23]

    В табл. 2.1 приведены результаты просчета девяти вариантов по производительности установки (по массе твердой фазы). Как видно из таблицы, теоретические результаты хорошо согласуются с экспериментальными (средняя относительная ошибка не более 12%). Плотность функции распределения по размерам записана нами относительно диаметра сферы, масса которой равна массе кристалла. Определим плотность функции распределения относительно малой стороны кристалла щавелевой кислоты из следующих соотношений  [c.190]

    Необоснованная идеализация структ фы потока жидкой фазы (описание их моделями идеального вытеснения или полного перемещивания) может привести к неверному расчету высоты массообменных аппаратов, что обусловит занижение числа контактных устройств и, в свою очередь, не позволит достичь на них заданной степени разделения. Причем, в зависимости от значения Ло>> и вида модели ошибка может составлять от 40% (при ЛОу = 0,6) до 14- 70% (при лод- = 0,2). [c.136]

    При экспериментальном определении условий равновесия между жидкостью и паром возможны различные погрещности, которые могут быть разделены на две группы. К первой группе относятся случайные, несистематические погрещности. Они обусловлены неизбежной при экспериментальном исследовании неточностью определения состава фаз, а также измерения температур кипения и давлений. Ко второй группе относятся систематические погрешности, вызываемые применением загрязненных исходных веществ, несовершенством приборов для исследования равновесия или ошибками в методе исследования. Отсюда вытекает необходимость проверки экспериментальных данных о равновесии. Это в равной мере относится как к вновь получаемым данным, так и к данным, уже [c.154]

    При / > 2 решение обратной задачи требует минимизации расхождений между вычисленными и экспериментальными изотермами в многомерном пространстве значений при неопределенном заранее наборе значений г, 5 и практически возможно только с применением ЭВМ. В качестве минимизируемой величины в большинстве случаев в соответствии с условиями эксперимента (постоянная относительная ошибка измерения концентрации МеА в органической фазе) целесообразно использовать сумму вида С/ = 2 (< орг /< орг" — 1) по всем экспериментальным точкам. [c.61]

    Кроме нанесенных металлов существует еще много других многофазных катализаторов. Например, катализаторы селективного окисления часто содержат 10 или большее число элементов, образующих несколько фаз часть из этих фаз кристаллическая [4]. Роль различных фаз в таких катализаторах, обычно найденных эмпирически, объяснить нелегко. Типичная ошибка состоит в предположении, что все ингредиенты катализатора непосредственно участвуют в каталитическом акте. Обычно это не верно. Как правило, некоторые компоненты вводят для облегчения синтеза катализатора, формирования нужной микроструктуры, увеличения прочности катализатора и продолжительности его работы. [c.16]

    Опыт расчета процесса однократной перегонки показал, что прп небольших степенях отгона имеет смысл преобразовать уравнения (11.23) и (11.24) таким образом, чтобы можно было получить сумму концентраций компонентов не в жидкой, а в паровой фазе. Вообще рекомендуется вести расчет по составам меньшей фазы, так как в этод случае даже небольшая ошибка в принятом значении степени отгона сильно отражается на концентрациях этой фазы, в то время как чувствительность концентрации большей фазы значительно меньше. [c.73]

    Об этом свидетельствует большое число публикаций, связанных с выявлением основных факторов, влияющих на эффективность работы катализатора в реакторах малого масштаба. К этим факторам относятся массо- и теплоперенос в слое, режим течения жидкой и газовой фаз, радиальное и продольное перемешивание, высота слоя и размер гранул катализатора [ЗО, 63, 64, 119, 120], Неучитывание этих факторов может привести к получению искаженных результатов и соответствующим ошибкам при получении данных для численного решения уравнений математического описания. [c.90]

    Оценку для систематической ошибки сдвига аналитического состава раствора Ах1. можно получить из уравнений материального баланса для закрытой системы с учетом изменения состава паровой фазы  [c.151]

    При исследовании двухфазных систем, особенно жидко-газофазных, представительный отбор проб сам по себе не всегда является простым делом. Действительно, если просто отбирать пробу из аппарата, работающего под давлением,. дросселированием в холодный приемник, то произойдет перераспределение веществ между фазами, что при относительно высоком давлении паров жидкой фазы и значительной растворимости газовой фазы при давлении приведет к существенным ошибкам. Взять же таким способом раздельно пробы фаз из аппаратов, основным условием работы которых является энергичное перемешивание, не удается. В этом случае есть несколько возможностей. Если реакция протекает не слишком быстро, то можно остановить мешалку, дать небольшое время на расслаивание системы и взять отдельно пробы из газовой и жидкой фазы в приемники без давления, для чего должны быть предусмотрены соответствующие отдельные пробоотборники. Такой прием имеет существенные недостатки во-первых, потому, что время расслаивания и не очень определенное, и в большом аппарате достаточно долгое во-вторых, из-за того, что остановка мешалки сама по себе вносит ошибку. Второй прием заключается в том, что к пробоотборнику при работающей мешалке подключается вакууммированный приемник, находящийся при температуре реакции и выдерживающий давление, равное реакционному. Открытием вентиля забирается проба обеих фаз, выравнивается давление, затем приемник отключается, выдерживается [c.71]

    Данные о теплотах образования карбоний-ионов позволяют рассчитать тепловые эффекты их реакций в газовой фазе. В приводимых ниже данных наряду с достаточно падежными попользованы оценочные значения теплот образования карбоний-ионов, однако точность оценки позволяет считать, что ошибки в определении тепловых эффектов не искажают характера закономерностей термохимии реакций карбоний-ионов. [c.166]

    Ошибка определения р-величины в меньшей степени зависит от ошибки определения площади или высоты ника, чем Котн, но на ошибку определения р-величины оказывает влияние точность определения объемов сосуществующих фаз и объемов проб жидкости, подвергаемых хроматографическому анализу. В случае неравенства объемов фаз ошибка определения увеличивается. Методически возможность проведения эксперимента с неравными объемами фаз имеет большое практическое значение в хромато-распределительном методе. Во-нервых, это позволяет оперировать с ненасыщенными друг относительно друга растворителями (фазами), а во-вторых, позволяет выбрать такое соотношение между объемами фаз, чтобы концентрации компонентов в этих фазах находились в оптимальных для анализа отношениях. Известно, что при распределении доля вещества в одной из фаз ( ) может быть выранлена уравнением  [c.42]

    Проведен статистический анализ погрешностей измеренип общего давления насыщенного пара теизпметрическим статическим методом. Установлена связь между статистическими погрешностями измерений и систематической ошибкой, вызванной обеднением конденсированной фазы по более летучему компоненту. [c.193]

    Хотя при таком приеме пе проводят разделения фаз, ошибка определения захвата не велика. Возможность определения сорбции без разделения фаз была показана на примере захвата сульфата калия осадком Ва304 (табл. 20). [c.268]

    Исследованию и расчету колонных химических реакторов и процессам абсорбции и десорбции в колонных аппаратах посвящена об-щирная литература. Больщинсгво работ относится к экспериментальному изучению конкретных систем и получению эмпирических формул дпя расчета аппаратов. В ряде работ применяются пленочная и пенетрационная модели массопередачи с химическими реакциями, изложенные в гл. 6. Поскольку, однако, эти модели разработаны для случая постоянства концентрации хемосорбента и абсорбтива (экстрактива) в сплошной и дисперсной фазах, их применение дпя расчета прямо- и противоточных аппаратов затруднено. Обычно при расчете колонных аппаратов полагают, что коэффициент ускорения массообмена вследствие протекання химических реакций постоянен по высоте колонны. Это допущение может привести в ряде случаев к существенным ошибкам. [c.286]

    Выполнение программной фазы задается с помощью управляющего оператора. На этане редактирования к программе подключаются все программные компоненты ДОС/ЕС, необходимые для организации ввода — вывода исходных данных и результатов расчета. (программы СУВВ), стандартные функции транслятора и все предусмотренные сервисные программы системы. Во время выполнения все логические ошибки (ошибки вследствие неверной записи алгоритма) обрабатываются операционной системой. [c.208]

    Приведенный расчет выполн1 н без учета влияния на основные размеры ректиф кационной колонны ряда явлений (таких как неравномерность распределения жидкости при орошении, обратное перемешивание, тепловые эффекты и др.), что иногда может внести в расчет существенные ошибки. Оценить влияние каждого из них можно, пользуясь рекомендациями, приведенными в литературе [8, П, 121 и в гл. 1П. Однако последовательность расчета рекомендуется сохранить и для колони с насадками других типов. Расчетные зави имости для определения предельных нагрузок по фазам, коэффициентов массоотдачи и гидравличе кого сопротивления насадок достаточно полно представлены в литературе 11, 11], в главе VI. [c.131]

    Система уравнений ( 11.90)—( 11.94), тем более дополненная уравнениями теплового баланса, слишком сложна даже для численных решений на современных ЭВМ. Поэтому систему уравнений ( 11.90)—( 11.94) неизбежно приходится упрощать. (Ошибки в определении коэффициентов модели обычно значительно превосходят неточности от упрощения модели). В первую очередь, сплошную фазу с катализатором рассматривают как квазигомогенную, аналогично тому, как это делается для однофазных реакторов с зернистым слоем катализатора. Принимают, что скорость теплообмена между фазами бесконечно велика. Далее, по возможности, принимается наличие Цредельных гидродинамических режимов (идеальное вытеснение или смешение) и постоянство объема потоков и, на1Сонец, если это допустимо, пренебрегают уносом газом компонентов жидкой фазы. Тогда для таких простейших случаев в приближении идеального вытеснения по обеим фазам система уравнений принимает вид (для реакции А -)- В С) [c.307]

    Динамическая удерживающая способность, определенная методом отсечки и рассчитанная по функциям отклика на гидродинамические возмущения фд н, возрастает при увеличении плотности орошения и расхода газа. Значения фдин в режимах до точки инверсии фаз превышают значения фд . С увеличением интенсивности гидродинамического режима разница в определении обоими методами эффективной доли объема аппарата уменьшается, резко падая в режиме эмульгирования. Истинной динамической удерживающей способностью следует считать фХ> так как при определении удерживающей способности методом отсечки возможны ошибки за счет слива жидкости иа некоторой части застойных зон насадочного слоя, которая входит в состав Фин. [c.403]

    В книге содержится большое число иллюстраций е виде графиков и таблиц, которые можно использовать при проектировании и анализе процессов переработки. Не все главы являются равноценными, некоторые из них, например гл. 11, написаны несколько схематично. При сверке материала книги с первоисточниками исправлены некоторые ошибки, содержащиеся в ней. Чтобы не увеличивать объем книги, в нее внесены лишь незначительные дополнения помещен график равновесных точек росы газа над растворами диэтиленгликоля, так как в нашей стране для осушки газов прижняется в основном этот осушитель представлены графики потерь диэтиленгликоля и триэтиленгликоля в паровой фазе с газом. [c.6]

    Среднюю пробу проще и удобнее отбирать в первом после скважины сепараторе. Обвязка сепаратора для отбора проб показана на рис. 187, 6. Такая обвязка является весьма удачной, так как обеспечивает при отборе проб гибкость и позволяет в случае необходимости разделять фазы и улавливать жидкость из потока. Во время отбора проб с помощью сепаратора определяется соотношение газ—нефть потока, поступающего в сепаратор. Пробу газа рекомендуется отбирать как можно ближе к сепаратору, однако газ из него должен выйти. Ни в коем случае нельзя отбирать пробу, дренируя газ из сепаратора, так как стенки последнего покрыты жидкостью, которая будет загрязнять пробу. Даже очень маленькое количество жидкости внесет заметную ошибку в анализ газа. Пробу газа рекомендуется отбирать из нентиля 11 (верх сепаратора) н указателя уровня Г). Если этих отводов нет, но отбор пробы газа необходим, ее можно отобрать из подсоедннительной трубки для манометра 8 в обечайке сепаратора. В этом случае рекомендуется использовать самый эффективный способ для удаления жидкости, которая может заноситься потоком газа в эту трубку. На сепараторах низкого давления для этой цели можно использовать каплеуловитель системы автоматического регулирования. [c.288]

    Анализируются компоненты X и (см. рис. 1, а), т. е. третий компонент и один из двух, входящих в состав образующегося бинарного соединения (содержание компонента Уд однозначно характеризует его состав, так как V 2 = 100%). В этом варианте основной вклад в опшбку вносит параметр к [2]. С увеличением к (т. е. при увеличении маточника в остатке ) ошибка в определении состава соединения возрастает довольно резко. Так, при к = 0,9 ошибка анализа при экстраполяции может увеличиться в десятки раз и более. Важно подчеркнуть, что в случае анализа на компоненты X и У ошибка практически не зависит от угла а, что и делает воеможным определение состава твердых фаз по методу Камерона 16]. Коэффициент вариации в определении состава соединения [c.160]

    В работе Е. М. Рутгайзера в качестве модели испаряющейся капли [161 принята капля, окруженная паровой оболочкой. Последняя, по мнению Е. М. Рутгайзера, составляет основное термическое сопротивление процессу передачи тепла. Поскольку при дросселировании агента в испаритель возможно образование не только жидких, но и паровых, и двухфазных пузырьков, то суммарная поверхность контакта фаз существенно превышает поверхность теплопередачи. Таким образом в исследование вкралась ошибка, на которую указывали все авторы последующих работ [16]. [c.52]


Смотреть страницы где упоминается термин Фаза ошибка: [c.80]    [c.63]    [c.235]    [c.191]    [c.271]    [c.401]    [c.14]    [c.72]    [c.327]    [c.220]    [c.64]    [c.201]    [c.26]    [c.31]   
ЯМР в одном и двух измерениях (1990) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

ошибки



© 2024 chem21.info Реклама на сайте