Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение фосфора марганце

    Ферросиликомарганец. Метод определения фосфора Марганец металлический и марганец азотированный. Метод определения марганца [c.567]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    Марганец металлический и марганец азотированный. Методы определения фосфора [c.567]

    Здесь приняты во внимание только известняк и доломит, в которых определяют главным образом кремнекислоту, закись железа, глинозем, известь, магнезию, реже фосфор, марганец и серу. Анализ не отличаете от анализа руд. Для определения извести и магнезии из-за высокого содержания последних следует брать соответственно малые навески. Зато для остальных веществ, которые в большинстве случаев встречаются лишь в небольших количествах, надо брать в работу навески побольше (1—3 г). [c.57]

    Определению фосфора не мешают 1000-кратное по отношению к фосфору количество кремния, а также титан, тантал, ниобий, мышьяк, сурьма, олово, свинец, бор, индий, таллий, галлий, алюминий, кальций, магний, никель, марганец, медь, железо, ртуть и серебро, если их количества не превышают 250-кратного по [c.101]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    Способ 2 [5, 6]. Металлический марганец (наивысшей степени чистоты) доводят до плавления в тигле из АЬОз в атмосфере чистейшего аргона (нагревание с помощью индукционной печи) или чистейшего водорода (нагревание с помощью печи сопротивления). Рассчитанное количество красного фосфора, спрессованного в таблетки, бросают в расплав, где тотчас же начинает протекать реакция образования фосфида. Для получения фосфида определенного состава можно сплавить полученный вышеописанным способом продукт с марганцем, фосфором или другим фосфидом марганца. [c.1693]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]


    Этим методом проанализировано более 600 органических соединений, содержаш их от 1 до 76% фтора. Удовлетворительные результаты были получены таюке для некоторых веществ, содержащих фосфор, серу, титан, железо, марганец или германий. Однако вопрос об определении фтора сожжением в колбе в присутствии этих элементов требует специального исследования. Результаты определения фтора во фторорганических соединениях представлены в табл. 4. [c.209]

    Для прямого анализа масел наибольшее распространение получил метод вращающегося электрода. В работе [136] описана методика определения содержания фосфора в смазочных маслах. Диск диаметром 12,7 мм и толщиной 3,2 мм, изготовленный из высокопористого графита, вращают со скоростью 7,5 об/мин. Верхним электродом служит графитовый стержень диаметром 6,5 лж с концом, заточенным на полусферу. Для предотвращения загорания пробы анализ проводят в атмосфере азота, который подают под давлением 150 мм рт. ст. по трубке диаметром 6,3 жж к мелкопористому стеклянному диску диаметром 19 мм. Диск устанавливают сбоку от вращающегося электрода на расстоянии 19 мм (рис. 67) так, что аналитический промежуток, вращающийся электрод и поверхность пробы продуваются азотом. Источником возбуждения служит униполярная высоковольтная искра. Условия анализа следующие продолжительность обжига 15 сек, экспозиции 55 сек, величина аналитического промежутка 3 мм, ширина щели спектрографа 0,05 мм. Внутренним стандартом служит марганец (0,1%), а буфером — литий (0,9%). Перед анализом 15 г пробы масла смешивают с Ъ мл раствора, содержащего 0,1% марганца и 0,9% лития. Оба элемента вводят в виде нафтенатов в газойлевую фракцию 260—370 °С. Подготовленную пробу выливают в фарфоровую лодочку. Установлено некоторое [c.164]

    Чугун. Чугун представляет собой железо (90—93%), в котором растворены углерод, цементит, марганец, кремний (полезные составные части чугуна), сера и фосфор (вредные примеси). Иногда чугун содержит хром, никель, ванадий и другие металлы, если они входили в состав руды. Каждая составная часть оказывает определенное влияние на свойств чугуна. [c.380]

    Металлургам часто приходится сталкиваться с вопросом за какими агрегатами — мартенами или конвертерами — будущее черной металлургии Скорее всего, не за теми, не за другими. Со временем их должны заменить высокопроизводительные непрерывные агрегаты, позволяющие синтезировать сталь заданного состава. Это несколько последовательно расположенных сосудов, в каждом из которых поддерживается определенный режим. В них постепенно выжигаются примеси, содержащиеся в чугуне, — углерод, сера, марганец, фосфор — и одновременно вводятся легирующие добавки. Процесс идет непрерывно значит, его легко автоматизировать. Занимая меньшую площадь, чем мартены или конвертеры, такие непрерывные агрегаты будут давать больше стали, особенно высоколегированной. [c.23]

    Эти определения требуют относительно дорогой и сложной аппаратуры процессы определения длительны и при настоящем положении вопроса могут быть поручены только опытным экспериментаторам. Поручать их лаборантам никоим образом не приходится, так как определения эти совершенно нельзя сравнивать с текущими определениями в условиях производства таких элементов, как углерод, марганец, кремний, сера и фосфор, а также специальных присадок. Определения эти относятся к наиболее сложным методам аналитической химии . [c.202]

    Характерно, что в воде рассматриваемых озер (см. рнс. 6), когда концентрация фосфора достигает нулевой точки (пересечение линии корреляции с ординатой), нитраты еще присутствуют в значительных количествах. Поэтому подтверждается предположение, что, за исключением местных кратковременных отклонений, именно в таких водоемах фосфор быстрее, чем азот, ограничивает синтез биомассы [5]. Использование всего водоема как целостной системы для определения потенциального роста водорослей дает некоторые преимуш.ества перед экспериментами, выполненными в емкостях. Водоемы постоянно пополняются питательными веществами (перенос этих веществ из более глубоких вод и отложений и т. д.). Например, некоторые микроэлементы (марганец, молибден и т. д.), ограничивающие продуктивность в емкостях, редко обнаруживают аналогичные эффекты в природных водоемах. Недостаток микроэлементов в водоеме обычно встречается только как временное явление. Неорганические и органические факторы роста , особенно гормоны, больше влияют на состав водорослей, чем на биомассу. Необходимо различать количественную и качественную роли таких факторов роста. Отмечено, что еще [3] нет экспериментальных данных, доказывающих, что эти вещества могут определять процессы эвтрофикации. [c.27]

    Мешающие ионы. В кислой среде вместе с кобальтом осаждаются железо (П1), медь, уран (VI), хром (III), цирконий, серебро, висмут, титан, ванадий (V), олово (IV), вольфрам, молибден, палладий (П). Остаются в растворе никель, цинк, алюминий, марганец, фосфор (V), аммоний, бериллий и щелочноземельные элементы. Мещают определению нитрат-ионы. [c.835]

    Не мешают определению, даже когда присутствуют в количестве, в 100 раз превышающем содержание кобальта алюминий, сурьма (III), мышьяк (И1), мышьяк (V), бериллий, висмут, кадмий, марганец, фосфор (V), свинец, торий, титан, цинк и цирконий. [c.839]


    Оксалат- и фторид-ионы, а также железо (ПГ) в малых количествах не мешают. При определении 1 мг/л фосфора (V) с точностью 2% следующие элементы не мешают, присутствуя в концентрациях до 1000 мг/л алюминий, кадмий, хром (III), медь, кобальт, кальций, марганец (II), никель, цинк, кремний, ванадий [c.1093]

    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    Ферросиликоцирконий. Методы определения циркония Ферросиликоцирконий. Методы определения фосфора Ферросиликоцрфконий. Метод определения кремния Ферросиликоцирконий. Метод определения меди Ферросиликоцирконий. Метод определения алюминия Ферросплавы, хром и марганец металлические. Общие требования к отбору и подготовке проб для химического анализа Ферровольфрам. Технические требования и условия поставки [c.568]

    Отмечено, что галоидоводородные кислоты дают отсчет на приборе с латунной горелкой вследствие перехода некоторого количества цинка в пламя из горелки. Эффект устраняется при нейтрализации кислот225. Азотная кислота при концентрации до 5% и серная до 1% не влияют на точность анализа, также не влияют медь и алюминий при концентрации, большей концентрации цинка в 1000 раз, а фосфор, марганец, железо, никель и магний — при концентрации, большей в 10 раз . Двуокись кремния уменьшает находимые количества цинка, также действуют медь при концентрации 50 мг/мл и алюминий (10 мг/мл). Цирконий при концентрации до 10 мг/мл не мешает определению цинка 224. [c.252]

    Затем остаток обрабатывают соляной кислотой и переводят в раствор обычным методом осаждают элементы группы полуторных окислов вместе с марганцем (пользуясь бромом). Тогда R2O3 может быть исправлено на количество марганца, прибавленного в виде перманганата калия при определении FeO. Прокаленные R2O3 после взвешивания сплавляют с пиросульфатом и в полученном растворе определяют железо и титан. Определение фосфора из аликвотной части этого раствора не рекомендуется делать по причине, указанной на стр. 175. Нецелесообразно также определять марганец колориметрически в аликвотной части этого раствора, вычитая добавленный для титрования FeO перманганат, и таким образом по разности получать содержание марганца в самом образце. [c.178]

    Определение щелочных металлов после разложения плавиковой и серной кислотами требует много времени. Особенно трудно избел<ать потерь при удалении аммонийных солей много операций необходимо провести для отделения магния. В связи с этими недостатками метод применяется сравнительно редко. Метод разложения плавиковой и серной кислотой чаще применяется для определения отдельных компонентов (марганец, фосфор, редкие земли и т. п.). [c.471]

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]

    Для определения марганца используют кристаллофосфор ЗЬзО. —Мп [141. Тетраокись сурьмы исключительно чувствительна к примеси марганца. Оранжево-красная полоса излучения (500—632—800 нм) отчетливо обнаруживается уже прн содержании 1-10 г Мн/г. Концентрационное гашение не обнарул ивается, когда концентрация достигает 3-10 г Мп/г. Марганец определяют визуальным сравнением,флуоресценции испытуемых и эталонных образцов. Сильными гасителями люминесценции SЬ20 — Мп являются Ге(П1), 2н(П), N (11), Со(П), РЬ(П), Си(П). Увеличивают яркость свечения окислы бора, фосфора и мышьяка. Определению [c.71]

    При определении магния в мартеновских шлаках с высоким содержанием фосфора мешающие элементы (Fe, Al, Mn и V) осаждают в виде оксихинолинатов нри pH 6,2 [214]. При онределении магния в ферромарганцевых шлаках марганец осаждают в виде МпОз добавлением КСЮд к кипящему азотнокислому раствору шлака. В фильтрате маскируют Fe, Al, Ti и следы Мп триэтаноламином и в различных аликвотных частях титруют сумму Mg и Са с тимолфталексоном и Са с флуорексоном [974]. Онисан комплексонометрический метод определения магния в вагранковых шлаках после отделения мешающих элементов экстрагированием купферонатов и диэтилдитиокарбаминатов [624]. Об определении магния в доменных и мартеновских шлаках см. также в [134], а об определении в шлаках производства металлического урана — в [952а]. [c.202]

    После отделения кремниевой кислоты фильтрат используют для определения компонентов, которые осаждаются аммиаком алюминий, железо, титан, марганец и фосфор. Чтобы полностью осадить содержащийся в пробе марганец, необходимо окислить его до Mn(IV), который в этом состоянии осаждается в виде марганцевой кислоты (НзМпОз) или, точнее, в виде МпОг-лИгО. Окисление Мп 11) до Mn(IV) чаще всего осуществляют в слабоаммиачной среде бромной водой. Осаждение аммиаком приводит обычно к соосаждению небольших количеств кальция и магния с осадком гидроксида, вследствие чего после фильтрования осадок растворяют в НС1 и снова осаждают аммиаком. Осадок фильтруют, промывают разбавленным раствором NH4 I и после прокаливания взвешивают сумму оксидов, обозначаемую обычно как R2O3. [c.459]

    Марганец полярографируем в форме его комплекса с триэтанол-амином. Микронавеску анализируемого вещества разлагаем смесью серной кислоты с перекисью водорода в фарфоровом тигле, упариваем почти досуха и растворяем в соляной кислоте. Фоном служит щелочной раствор триэтаноламина с добавкой желатина [12]. Потенциал полуволны комплекса марганца с триэтанолами-ном —0,5 в (отн. Н.К.Э.). Стандартом служит МпС12-4Н20. Присутствующие в органических соединениях галогены, сера, фосфор, германий и ртуть определению марганца не мешают (см. табл. 1) [17]. [c.158]

    Зависимость образования лимонной кислоты от состава среды особенно четко выражена у Aspergillus niger. В этом легко убедиться, изменяя содержание одного из компонентов среды при сохранении всех прочих условий. Если к простой среде с глюкозой после удаления микроэлементов (их осаждают гидроокисью алюминия) прибавлять определенные компоненты в известных концентрациях, а затем инокулировать среду и после 9-дневной инкубации в колбах со встряхиванием определять массу мицелия, остаточное количество сахара и количество образовавшейся лимонной кислоты, то можно установить ряд интересных соотношений (рис. 10.1). Приведенные кривые позволяют сделать следующие выводы а) нитрат аммония и сульфат магния не оказывают какого-либо специфического влияния на выход лимонной кислоты-они влияют только на рост мицелия б) кривые для цинка, железа и фосфора характеризуются четким пиком. При концентрациях, обеспечивающих лишь субоптимальный рост мицелия, отмечается более высокий выход лимонной кислоты однако при дальнейшем снижении концентрации этих трех элементов торможение роста мицелия ограничивает и выработку кислоты в) особенно высокие выходы можно получить в тех случаях, когда два компонента-железо и цинк-присутствуют в лимитирующих количествах. Марганец оказывает отчетливое подавляющее действие 3 мкг Мп на 1 л среды уже снижают выход кислоты (между тем при использовании очищенной продажной [c.330]

    Полный количественный анализ, распространяющийся на все составные части железных руд, плавней и шлаков, не принадлежит к числу повседневных работ химика-металлурга. Как правило, полному анализу подвергают через определенные промежутки времени средние пробы отдельных сортов руды для получения исходных данных для расчета шихты далее полный анализ необходим для проверки правильности таких расчетов, сделанных по составу шлака, а также при заключении сделок на закупку руды. Но в громадном большинстве случаев, например при текущих испытаниях поступающей руды, удовлетворяются опреаелением ценных или вредных составных частей, как железо, марганец, фосфор, сера, медь, мышьяк, [c.7]

    Мы не можем касаться здесь аналитической техники определения кислорода. Из реагентов, применяемых для этих целей, можно назвать белый фосфор, органические поглотители кислорода (такие, как пирогаллол или лейкосоединения красителей), медь, гипосульфит натрия и хлористый хром. Для растворов самым распространенным является, повидимому, метод Винклера в нем кислород используется для освобождения эквивалентного количества хлора (через промежуточную систему двухлористый марганец — треххлористый марганец), который легко может быть определен путем титрования иодистым калием и тиосульфатом. Если для определения кислорода применяются пирогаллол или лейкосоединения красителей (белое индиго, лейкометиленовый синий), процесс освобождения кислорода может быть прослежен колориметрически или спектрофотометрически. Подобная же методика применима при превращении гемоглобина в оксигемоглобин такой метод определения кислорода был впервые введен при исследовании фотосинтеза Хоппе-Зейлером [5] и позже использован Хиллом [64, 74]. Для тех же целей Остергаут [23, 24] предложил использовать кровь краба, содержащую гемоцианин и синеющую в присутствии кислорода. [c.254]

    При пасгюртном анализе железных руд и агломератов определяют содержание товарной влаги, общее содержание железа, закиси железа, двуокиси кремния или нерастворимого остатка, окиси кальция, фосфора, серы. В отдельных случаях определяют содержание окиси магния, окиси алюминия, меди и др. При полных анализах кроме указанных компонентов, определяют металлическое железо, марганец, титан, ванадий, хром, щелочные металлы, свободную кремневую кислоту реже в железных рудах определяют мышьяк, сульфидную серу и углерод. Для специальных анализов иногда требуется определение бора, цинка, свинца, германия и др. [c.79]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]


Смотреть страницы где упоминается термин Определение фосфора марганце: [c.195]    [c.169]    [c.35]    [c.204]    [c.690]    [c.709]    [c.759]    [c.136]    [c.90]    [c.276]   
Аналитическая химия фосфора (1974) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец определение

Определение в фосфорите



© 2025 chem21.info Реклама на сайте