Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса образования органически

    Используя табличные значения стандартной энергии Гиббса образования органических веществ при различных температурах (например, в Приложении I), можно оценить термодинамическую вероятность, например, термических реакций превращения углеводородов разных классов. [c.85]

    Таким образом, термодинамические характеристики образования идеального раствора показывают, что в этом процессе энергия Гиббса уменьшается, энтропия возрастает, а энтальпия, теплоемкость, внутренняя энергия и объем не меняются. Только при одновременном выполнении всех этих условий раствор является идеальным. Иногда эти условия называют законами идеальных растворов. Приближаются по своим свойствам к идеальным растворам, например, смеси оптически активных изомеров, смеси изотопов, смеси некоторых неполярных органических веществ, таких, как бензол — толуол, некоторые расплавы. [c.355]


    Это свойство сопряженных реакций играет исключительно важную роль в живой природе. Например, синтез важнейщих компонентов живой материи — белков и нуклеиновых кислот соответственно из аминокислот и нуклеотидов сопровождается существенным увеличением энергии Гиббса. Эти процессы становятся возможными потому, что протекают сопряженно с гидролизом аденозинтрифосфорной кислоты (АТФ), который сопровождается существенным уменьшением энергии Гиббса, перекрывающим ее рост при синтезе указанных полимеров. Наоборот, образование АТФ из продуктов ее гидролиза, сопровождающееся увеличением энергии Гиббса, происходит сопряженно с окислением органических соединений (идущим с существенным уменьшением энергии Гиббса). [c.391]

    Электростатические и ковалентные составляющие других термодинамических характеристик рассчитывают по соотношениям Д//, - AS T-v) VI АН2 = AGj. Данные по термодинамике образования молекулярных комплексов иода с органическими растворителями и их составляющие, рассчитанные на основе изложенных взглядов, представлены в табл. 1.5. Очевидно, что для большинства систем абсолютные значения электростатических и ковалентных составляющих многократно превышают величины результирующих функций и, в отличие от них, более чувствительны к природе донора электронной пары. При этом высокой степени переноса электронной плотности (характеризуемой AG2), соответствует значительная величина электростатического вклада (до 80% AG2), определяемая степенью разделения зарядов в комплексе. Как правило, AG, и AGj направлены навстречу друг другу, и изменение энергии Гиббса реакции в результате отражает незначительную часть энергетики взаимодействия. На основе величин электростатических и ковалентных составляющих нетрудно выявить молекулярные комплексы иода, для которых перенос электронной плотности связан с разделением заряда, и те, где разделение заряда незначительно. К первому типу относятся комплексы с эфирами, спиртами, аминами, амидами, сульфоксидами. Ко второму - с бензолом, толуолом, ксилолом и их производными. В сочетании с другими характеристиками такой подход позволяет глубже понять природу связи в молекулярных комплексах. Вместе с тем при анализе необходимо учитывать также и структурные особенности реагентов и комплекса. К числу таких объектов можно отнести макроциклические соединения. [c.19]

    Эмпирические методы расчета стандартных энтальпий образования и сгорания органических веществ, а также их молярные теплоемкости, энтропии, энергию Гиббса, условно можно разделить на две группы  [c.97]


    Авторами этой книги была просмотрена вся литература до 1 января 1966 г. Для 741 чистого органического вещества приведены таблицы значений теплоемкости, энтропии, энтальпии и энергии образования Гиббса для состояния идеального газа в интервале температур от 298 до 1000° К. Примерно для 4400 органических соединений по возможности наиболее полно приведены значения энтропий, энтальпий и энергий образования Гиббса для состояния идеального газа и конденсированного состояния при 298° К. Поскольку лишь некоторые органические вещества устойчивы выше 1000° К (727° С), таблицы были ограничены интервалом температур от 298,15 до 1000°К. В книге рассматриваются некоторые закономерности между термодинамическими свойствами углеводородов и других классов органических соединений, полезные при оценке термодинамических свойств соединений, не изученных экспериментально. [c.15]

    В настоящей главе описываются методы расчета теплоты образования, теплоемкости и энтропии (или энергии Гиббса) органических соединений в идеальногазовом состоянии. [c.203]

    При ионизации молекул слабых электролитов появление заряда на органической молекуле вследствие ион-дипольного взаимодействия вызывает ориентацию диполей воды, существенно нарушающую структуру, образованную кластерами. Вследствие нарушения этой структуры возрастает энтропия системы, а ион-дипольное взаимодействие приводит к уменьшению ее энергии Гиббса. В результате растворимость слабого электролита с увеличением степени ионизации резко возрастает, т. е. возрастает энергия гидратации молекул. [c.13]

    Д(5г — изменение энергии Гиббса, вызванное взаимодействием органических молекул с водой при образовании раствора. [c.13]

    Обобщен обширный материал по термодинамическим свойствам веществ, относящихся к различным классам кислородсодержащих органических соединений. Даны критические обзоры литературных данных и таблицы рекомендуемых значений. Приводятся величины теплоемкости, энтальпии, энтропии, энергии Гиббса, теплот фазовых превращений, теплот образования и термодинамических констант для твердого, жидкого и газообразного состояния вещества. [c.304]

    Полное описание какой-либо заданной системы возможно лишь при экспериментальном исследовании отдельных происходящих в ней реакций. Тем не менее для описания донорно-акцепторных взаимодействий предпринималось много попыток использовать более или менее общего типа корреляции (иногда разработанные для других целей). Например, хорошо известное в органической химии уравнение Гаммета использовалось также для интерпретации реакций образования донорно-акцепторных аддуктов. Первоначально это уравнение было выведено для объяснения влияния электрофильных или нуклеофильных заместителей на химические равновесия и скорости реакций [82, 121]. Однако, как бьшо найдено, оно хорошо отражает изменения свободных энергий Гиббса (AG) многочисленных реакций, порядок частот инфракрасных колебаний [79, 101] и, что особенно важно для данного рассмотрения, теплоты образования аддуктов фенолов с молекулами, содержащими донорные атомы кислорода, азота и серы [32, 119]. [c.69]

    ПРИЛОЖЕНИЕ П. СТАНДАРТНЫЕ ИЗМЕНЕНИЯ ЭНЕРГИИ ГИББСА ОБРАЗОВАНИЯ НЕКОТОРЫХ ] ЕОРГАНИЧЕСКИХ И ОРГАНИЧЕСКИХ ВЕЩЕСТВ И ИХ СТАНДАРТНЫЕ ЭНТРОПИИ [c.295]

    Из бинарных соединений хлора (I) относительно устойчив лишь 1F — Слабо экзотермическое соединение. МонофториД хлора Образуется при нагревании сухих СЬ и F2 (выше 270 С) Нитрид b N ii оксид СЬО — эндотермические соединения и неустойчивы. Оксид распадается со взрывом на СЬ и О2 при небольшом нагревании, при соприкосновении с органическими веществами и даже при переливании в жидком состоянии. Поскольку энергия Гиббса образования СЬО и I3N -I- величина положительная, эти соединения получают косвенным путем. У " У  [c.319]

    Оценочные значения констант равновесия реакций, протекающих между газообразными органическими веществами, удобно получать по АС° образования внутримолекуляр Лых связей различного типа. В основу расчета можно положить допущение, что стандартное изменение энергии Гиббса при образовании соединения обусловлено природой и числом атомных связей в его молекуле, т. е. приписать каждому типу связи определенное значение энергии образования Гиббса. Значение А0° реакции рассчитывают затем по ДС°бр реагирующих веществ. В таблицах приводятся обычно значения ДО°бр связей и многочлены, характеризующие их зависимость от температуры. Тогда ДО др соединения в этом случае вычисляют как сумму энергий образования связей. Например, ДО бр бутана, имеющего структурную формулу Н Н Н Н [c.383]

    Кафедра неорганической химии. Получил дальнейшее развитие структурно-термодинамический подход к описанию протолитических равновесий и равновесий комплексообразования в бинарных водно-органических средах, основные компоненты которого составляют А) знание сольватного состояния (стехиометрии и констант образования гетеросольватов) каждого из участников равновесия - комплексообразователя, лиганда, комплекса, протона В) количественные данные об ассоциативных равновесиях между компонентами бинарного растворителя С) использование констант равновесий в унитарной (мольно-долевой) шкале, исключающее из рассмотрения вклад упаковочного члена, характеризующего растворитель, а не процесс в растворе О) использование равновесных данных по сольватному состоянию реагирующих частиц для нахождения энергии Гиббса переноса реагента из реперного растворителя в бинарный, обусловленной изменениями окружения реакционных центров в ходе варьирования состава бинарного растворителя Е) разделение общей энергии Гиббса переноса равновесия (и его участников) на вклад стехиометрической сольватации и структурный вклад, отражающий реорганизацию растворителя вокруг растворенной частицы и образование полости соответствующего размера. [c.151]


    Абсолютные значения энергии Гиббса системы определить невозможно, поскольку в энергию Гиббса входит величина энтальпии. Величину энергии Гиббса можно лишь выразить в виде разности энергий Гиббса двух различных состояний, одно из которых принято за стандартное. В гл. VIII приведены термодинамические величины для стандартного состояния каждого из элементов, входящих в органические соединения, а также данные для некоторых важных неорганических соединений. Аналогичные величины для стандартных состояний органических веществ представлены в виде таблиц в последующих главах. Эти таблицы содержат величины энергии Гиббса, отвечающие образованию соединения в его стандартном состоянии из элементов, находящихся в своих стандартных состояниях. Для соединений в качестве стандартного желательно выбирать такое состояние, которое отвечало бы наибольшему удобству при использовании, поэтому для большинства приведенных соединений в качестве стандартного используется состояние гипотетического идеального газа при давлении 1 атм. Для некоторых соединений, обладающих очень низким давлением пара, термодинамические данные указаны для твердого или жидкого состояния. В принципе стандартное состояние идеального газа можно использовать непосредственно в расчетах при малых давлениях газовой фазы при расчете термодинамических свойств веществ при более высоких давлениях нетрудно внести соответствующие поправки к свойствам вещества в состоянии идеального газа, обусловленные его неидеальным поведением при высоком давлении. Энергия Гиббса, связанная с образованием соединения в стандартном состоянии идеального газа, чистой жидкости или в твердом состоянии при давлении 1 атм из элементов, взятых в их стандартных состояниях, называется стандартной энергией образования Гиббсаи обозначается надстрочным индексом градус AGf. [c.135]

    В предыдущих главах было отмечено, что энтальпии образования большого числа органических веществ известны по крайней мере со средней точностью. Ввиду того что для различных типичных термохимических расчетов, как правило, требуются данные по энтропиям и теплоемкостям, часто возникает необходимость оцешмь эти величины с помощью приближенных термодинамических расчетов. Несмотря на то что число исследований по определению энтропий органических соединений значительно возрос.ло с момента открытия и широкого использования третьего закона термодинамики [1598], тем не менее существует еще большое число веществ, для которых известны энтальпии образования, а значения энтропий не определены. Отсюда вытекает практическая необходимость приближенных расчетов энтропий с точностью, соответствующей точности термохимических данных. В ранних работах термохимические величины обычно определяли с точностью в несколько десятых килокалории на моль. Такую же погрешность в величинах изменений энергии Гиббса и константах равновесия при комнатной температуре дает ошибка в величине энтропии на 1—2 кал моль °Щ, поскольку [c.158]

    В pa Tgope усиление взаимодействия молекул растворенного органического вещества между собой всегда приводит к более или менее выраженной ассоциации. Ассоциация.является следствием притяжения соответствующим образом ориентирующихся диполей, образования межмолекулярных водородных связей или гидрофобного взаимодействия углеводородных радикалов дифильных молекул, например ПАВ, В адсорбционной фазе между молекулами одного вида может возникать как притяжение, ведущее к образованию адсорбированных ассОциатов (в случае адсорбции ПАВ, прямых красителей, гуминовых веществ — к образованию мицелл, состоящих из нескольких десятков молекул или ионов), так и к взаимному отталкиванию ионов и диполей, единообразная ориентация которых навязана взаимодействием углеродного скелета молекул с атомами поверхности адсорбента. При такой, ориентации нормальные к поверхности составляющие всех адсорбированных диполей имеют одинаковый знак заряда и поэтому между ними возникает отталкивание при любом вращении в плоскости, параллельной поверхности адсорбента. Целесообразно коэффициент ф —представить как произведение двух величин, из которых одна характеризует эффект ассоциации (притяжения) молекул с ростом концентрации органического компонента в обеих фазах fass, а вторая характеризует эффект взаимного отталкивания одинаково ориентированных диполей или ионов в адсорбционной фазе ф . Разумеется, изменения энергии Гиббса избирательной адсорбции растворенных веществ, связанные с этими факторами, будут иметь противоположный знак. [c.86]

    Недавно было установлено образование азотистой кислоты при п.1 ролизе органических веществ, содержащих азот и кислород (нитро- и нитрозосоединения, оксимы и др.), и образование летучих фенолов при пиролизе ароматических соединений, содержащих атомы кислорода в ядре или боковой цепи. Азотистую кислоту можно легко обнаружить по реакции Грисса с нафтиламином и сульфаниловой кислотой, а фенолы—по образованию индофенола при проведении реакции Гиббса с 4-хлоримин-2,6-дихлорхиноном эти реакции можно также с успехом использовать для предварительных исследований. [c.33]

    В органической химии часты случаи, когда иа одних и тех же реагентов параллельно образуются. несколько продуктов. Так, при нитровании алкилбензолов образуется смесь орто-, мета- и пара-замещенных производ 1ых, в реакциях присоединения к сопряженным диеновым углеводородам образуются продукты 1,2- и 1,4-при-соединения и т. д. Нередко при изучении кинетики процесса -особенно в случае быстрых реакций, абсолютн-ые скорости образования каждого из производных не определяют, а о соотношении скоростей судят по относительным количествам образовавшихся продуктов, считая, что их соотношение определяется- отношением скоростей и, следовательно, разностью значений гиббсо-вых энергий активации для образования различных продуктов. [c.221]

    Для газов и паров за стандартное принято состояние вещества в виде идеального газа при давлении 1 ат (0,1013 МПа 0,1 МПа). Именно для такого состояния и температуры 298 К в термодинамических таблицах, имеющихся в монографиях и справочниках, приводятся данные о стандартной энергии Гиббса и энтальпии образования соединений из простых веществ, а также об их абсолютной энтропии. Первые две величины обозначают ДС /,298 и АЯ /,298 (где индекс f происходит от англ. formation), а последнюю гэв. Если соединение при указанных условиях (1 ат, или 0,1013 МПа, и 298 К) является жидким или твердым, эти данные соответствуют его фиктивному состоянию в виде идеального газа. В свою очередь, AG°f, 298 и ДЯ /,298 относятся к образованию соединения из простых веществ (Ог, На, С и др.) в их обычном для 0,1 МПа и 298 К газообразном, жидком или твердом состоянии в виде наиболее стабильной модификации (значения ДЯ /,298 и 5 г98 для некоторых органических веществ приведены в качестве примера ниже, в табл. 3). [c.22]

    В настоящей работе приведены экспериментальные данные по распределению уранилнитрата и воды между водной и ТБФ фазами, а также по плотности водной и органической фаз при 25° С. Активность ТБФ, вычисленная графическим интегрированием уравнения Гиббса— Дюгема, представлена для равновесных концентраций уранилнитрата в водной фазе от 0,05 до 2,00 М. Значения активности использованы для анализа данных по распределению в предположении образования комплекса и02(Ы0з)2-2ТБФ. Наконец, данные о плотности и концентрации использованы для оценки парциальных молярных объемов некоторых молекулярных комплексов в органической фазе. В конце статьи приведены употребляемые ами обозначения. [c.152]


Смотреть страницы где упоминается термин Гиббса образования органически: [c.290]    [c.290]    [c.46]    [c.89]    [c.32]    [c.50]    [c.76]    [c.243]    [c.89]   
Краткий химический справочник Ч.1 (1978) -- [ c.129 , c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббса образования

Гиббсит



© 2025 chem21.info Реклама на сайте