Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк III определение бромом

    Броматометрический метод особенно удобен для определения мышьяка(1П) и сурьмы(П1). Броматометрическое определение сурьмы применяют при анализах баббитов. Этим методом пользуются также при анализе некоторых органических соединений, так как многие органические соединения способны к реакциям бромирования, протекающим при действии свободного брома, например  [c.413]


    Для определения фосфора в мышьяке и трехокиси мышьяка две навески по 2,5 г тонкорастертого мышьяка или окиси мышьяка помеш,ают каждую в коническую колбу емкостью 50 мл, приливают 9 мл 6 н. соляной кислоты. При анализе мышьяка добавляют по каплям через воронку 6 мл брома и растворяют на холоду. [c.142]

    Точку эквивалентности при броматометрическом титровании устанавливают различными методами. При определении сурьмы (также мышьяка и др.) нередко применяют необратимые индикаторы, чаще всего метиловый оранжевый после введения небольшого избытка бромата выделяется свободный бром, который окисляет индикатор, что сопровождается исчезновением красного окрашивания. Можно также прибавить в конце титрования немного иодида калия и раствор крахмала. Свободный бром реагирует с К1  [c.432]

    При кулонометрическом титровании мышьяка(1П) электрогенерированным бромом [857, 914, 985, 1123—1125] с биамперометрическим или потенциометрическим определением конца титрования чувствительность метода удалось повысить до 30 мкг As в пробе. [c.90]

    При определении мышьяка в сере большое значение имеет переведение пробы в раствор без потерь мышьяка. Лучшим методом является обработка пробы смесью (2 1) брома с ССЦ при температуре 0-5 С [6621. [c.172]

    Цель работы. Определение мышьяка посредством титрования окислителем с применением в качестве реагента электролитически генерируемого брома и с использованием амперометрического метода титрования до мертвой точки . [c.341]

    Кулонометрическое титрование имеет в ряде случаев значительные преимущества перед обычным титрованием. Не нужно заранее готовить рабочие растворы и устанавливать их точную концентрацию. В качестве генерирующих титрующих веществ могут применяться вещества, мало устойчивые в обычных условиях и непригодные поэтому для приготовления рабочих растворов. Различные окислители легко определять генерированными ионами двухвалентного олова, одновалентной меди, трехвалентного титана, двухвалентного хрома и др. Так титруют, например, хром, марганец, ванадий, уран, церий и некоторые другие элементы после предварительного перевода их в соединения высшей валентности. Для титрования восстановителей, например, трехвалентных мышьяка и сурьмы, одновалентного таллия, двухвалентного железа применяют генерированные свободный бром и иод, ферри-цианид и др. Подбирая соответствующие индикаторные системы для установления конца электролиза, можно также определять два или более окислителей или восстановителей в смеси, если их потенциалы восстановления различны. Известны, например, методы кулонометрического титрования урана и ванадия, хрома и ванадия, железа и ванадия, железа и титана в смеси. Наконец, кулонометрический метод допускает автоматизацию процесса титрования и управление им на расстоянии, что имеет важное значение при определении, например, различных искусственных радиоактивных элементов. [c.273]


    Иодометрию широко используют в аналитической практике для определения таких окислителей, как хроматы, гипохлориты, свободные галогены (хлор, бром), медь(П) и др., а также восстановителей— мышьяка (III), сульфитов, сульфидов и др. Такие ионы, как РЬ + и Ва +, которые осаждаются в виде нерастворимых хроматов, также можно определять иодометрическим способом по остаточному методу, после их предварительного осаждения избытком стандартного раствора хромата. [c.290]

    Ход определения. Определенный объем, сточной воды от 1 до 10 мл, содержащий от 0,001 до 0,01 мг мышьяка, помещают в коническую колбу на 100 мл, добавляют 20 мл дистиллированной воды и несколько жл бромной воды до ясно желтой окраски. Кипятят несколько минут на электрической плитке. Избыток брома удаляется при кипячении (до полного обесцвечивания пробы). После охлаждения к пробе приливают 25 мл серной кислоты (1 4), доводят объем дистиллированной водой до 50 мл, прибавляют 1 мл 10% раствора хлорида олова и всыпают 5 г гранулированного цинка, не содержащего мышьяка. [c.91]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    В последние годы начала развиваться разновидность метода определения атомного состава вещества но молекулярным спектрам с испарением пробы из металлической кюветы в диффузионном водородном пламени. Метод привлекает простотой, экспрессностью, высокими чувствительностью и точностью. Метод позволяет определять в растворах содержание серы, фосфора, селена, теллура, мышьяка, бора, хлора, брома, иода, азота, углерода и некоторых металлов. Различные аспекты метода рассмотрены в обзорах [376—378]. [c.262]

    В настоящее время разработаны различные газохроматографические методы для определения содержания следующих элементов в органических соединениях углерода, водорода, кислорода, азота, серы, хлора, брома, фосфора, мышьяка. Не вызывает сомнений возможность применения газохроматографических методов для определения и других элементов, которые образуют летучие соединения в результате предварительных химических превращений. В частности представляет интерес определение металлов, образующих летучие хелаты. [c.185]

    Кроме перечисленных выше элементов, в зерне злаков содержится марганец, медь, цинк, бор, алюминий, йод, кобальт, никель, молибден, фтор, селен, бром, титан, олово, мышьяк, литий, ванадий, барий, стронций, цезий, рубидий и многие другие элементы. Многие из этих элементов играют определенную роль как микроэлементы в жизни растений и животных. [c.364]

    Другой метод основан на добавлении избытка стандартного раствора мышьяка(III) и обратном титровании стандартным раствором иода. Эта методика является составной частью метода определения [2] гипобромита, бромита и бромата. Введение в раствор избытка мышьяка с последующим обратным титрованием иодом позволяет определять лишь сумму гипобромита и бромита. Тот же метод, используемый после разрушения гипобромита ионом аммония, позволяет определять только бромит. Иодиметрическое титрование дает сумму всех трех анионов. [c.278]

    Для определения хлора и брома в трудно окисляемых или летучих веществах используют метод окисления перекисью натрия в герметически закрытом стальном сосуде, так называемой бомбе. Пробу анализируемого вещества вносят в бомбу, прибавляют перекись натрия, герметически закрывают бомбу и осторожно нагревают пламенем микрогорелки. Разложение заканчивается через 40—60 сек. Бомбу охлаждают, открывают и дистиллированной водой вымывают из нее содержимое. Если добавлено большое количество перекиси натрия, то уголь при окислении почти не образуется. В полученном растворе определяют хлор и бром обычными методами аргентометрии. В растворе, полученном после окисления органического вещества в бомбе, можно определять и другие элементы, например серу, фосфор, мышьяк, кремний и многие металлы. [c.307]

    Бромометрию часто применяют в органическом и фармацевтическом анализе. Бромометрическое определение фенолов предложено в 1876 г. В. Коппешааром. Бромометрическое определение обычно заканчивают иодометрическим определением с применением в качестве индикатора раствора крахмала. Мышьяк (III) бромом количественно окисляется до мышьяка (V), сурьма (III) —до сурьмы (V), железо (II) — до железа (III). Сернистая кислота, тиосульфат натрия и сероводород окисляются бромом до серной кислоты и ее солей. [c.415]


    С относительной погрешностью 1—3% найдено содержание натрия [334] в нефти. При нейтронно-активационном определении [335] примесей мышьяка, меди, брома, никеля, цинка и натрия в нефти пробу (5—7 мл) запаивают в полиэтиленовую или кварцевую ампулу и облучают вместе с монитором потока (серебряная фольга) 10 мин потоком тепловых нейтронов 10 нейтр/см -с или 1 ч потоком 10 нейтр/см -с. Облученную пробу количественно переносят в измерительную ампулу и при помоши 400-канального анализатора с сцинтилляционным детектором измеряют активности указанных радиоизотопов. Рассмотрены некоторые интерферируюшие реакции, мешающие анализу на мышьяк и медь. Показано, что предел обнаружения элементов может составлять, 10 % меди — 0,5, мышьяка — 0,1, брома— 10, никеля — 2, натрия — 0,3. После распада короткоживу-щих радионуклидов алюминия и ванадия в [336] определяют содержания аргона и марганца по фотопикам 1,29 и 0,85 МэВ соответственно. Те же авторы [337] разработали методику нахождения алюминия, ванадия, марганца, цинка и меди в сырой нефти и ее золе. При расчете содержания алюминия учитывают вклад мешающей ядерной реакции (л, р) А1, а также вводят поправку на вклад в анигилляционный гамма-пик 0,51 МэВ комптоновского рассеяния от гамма-линий радиоизотопа натрия-24. Для определения указанных элементов предложено три режима облучения 2, 10 и 20 мин. Относительная погрешность метода для ванадия, алюминия и меди составляет 8, 10 и 9% соответственно. Аналогичный способ использовали [347—349] для анализа на ванадий, натрий, алюминий, марганец в продуктах переработки нефти. [c.89]

    Завершение реакции окисления мышьяка(III) бромом индицируется визуально по обесцвечиванию метилового оранжевого. Описанный метод отличается простотой и эксирессностью и позволяет определять мышьяк при его содержании 0,005 мкг/мл в 20 мл раствора. Метод не селективен, определению мешают восстановители, взаимодействующие с бромом. Однако этот недостаток в некоторых случаях не препятствует анализу. [c.26]

    Платина. Вследствие очень малой химической активности и высокой температуры плавления (1770°С) платина является ценнейшим материалом для изготовления различных химических приборов и сосудов (тиглей, чашек, электродов для электрогра-виметрических определений и т. д.). Однако, несмотря на большую устойчивость платины, хлор, бром, царская водка (смесь концентрированных HNO3 и НС1), едкие щелочи ее разрушают. Платина об )азует сплавы со свинцом, сурьмой, мышьяком, оловом, серебром, висмутом, золотом и др. Соединения указанных элементов в платиновой посуде нагревать нельзя. [c.45]

    По появлению брома в растворе, который может быть обнаружен по обесцвечиванию метилового оранжевого (необратимое окисление инцикатора), устанавливают конечную точку титрования. Препараты бромата калия могут быть получены в чистом виде, растворы его устойчивы. Применяют фомат калия для определения сурьмы(1П), мышьяка(111), олова(11) и цр. [c.142]

    При титровании целого ряда веществ в уксусной кислоте можно использовать также такие сравнительно новые титранты, как монохлорид иода или тетраацетат свинца. Определение иодида в присутствии хлорида и бромида проводят титрованием в среде уксусной кислоты раствором СЮг в качестве титранта. В серии окислительно-восстановип ельных титрований в среде уксусной кислоты некоторых окислителей (бром, хромовая кислота, перманганат калия, монохлорид иода, бромат калия и иодат калия) были апробированы в качестве титрантов такие соединения, как дитионат натрия, ацетат ванадила, три-хлорид мышьяка или хлорид олова(II). [c.348]

    Галлий и его арсениды и антимониды. Для определения примесей в полупроводниковой системе Ga—Р—S лучшим растворителем является смесь (4 1) азотной и соляной кислот, насы-ш енная бромом [191]. Серу затем определяют турбидиметрически в виде BaS04 в присутствии этанола с диэтиленгликолем. Чувствительность определения серы 2,6 мкг/мл, ошибка 4—6% [191]. Фотометрирование золя сульфида свинца позволяет определить серу в галлии, арсениде галлия, мышьяке и индии [140]. [c.197]

    Определение серы в арсениде галлия и мышьяке [140]. 2 г тонкорастертого в агатовой ступке арсенида галлия (или мышьяка) помещают в колбу для отгонки мышьяка, приливают 10 капель 1%-ного раствора Na l, 2 мл концентрированной НС1 (ос.ч.), а затем осторожно (при постоянном перемешивании) добавляют по каплям 2 мл Bfj. Колбу соединяют с холодильником трубкой и осторожно нагревают на электроплитке. После удаления брома дают раствору остыть и осторожно приливают еще 1 мл Brj и продолжают нагревание до растворения навески. Затем приливают 8 мл НС1 и продолжают отгонку мышьяка при нагревании раствора до тех пор, пока в колбе не останется 2—3 мл (при анализе мышьяка — 1 мл). [c.197]

    Основные трудности при определении малых количеств мышьяка в сере связаны с методами его выделения. Из всех описанных способов разложения серы при определении мышьяка (сплавление с пиросульфатом, разложение смесью азотной и серной кислот или раствором брома в СС14, экстрагированием раствором хлорида магния, нагретого до температуры плавления серы [233]) [c.217]

    Аналогично порошкообразному железу реагирует и окись кальция. Для наиболее эффективного поглощения мышьяка и сурьмы были применены слой медных опилок и MgO. Дистилляцию небольших количеств ртути удобно проводить в стеклянных трубках, используемых для гравиметрического определения воды по способу Пенфильда. Можно успешно применять разложение неорганических веществ в токе газа [93J, Чаще этот метод термического разложения выполняют в токе кислорода, который вызывает повышение температуры и очень эффектививно реагирует с рядом элементов. Прокаливанием в токе кислорода в кварцевой или стеклянной трубке отгоняют ртуть в элементном виде и конденсируют ее на охлаждаемой поверхности трубки. Окислы серы поглощают раствором брома в 3 Af H l, где они окисляются до серной кислоты. [c.139]

    Следует отметить, что мышьяк(У) в определенных условиях также может экстрагироваться из бромидных растворов. Стадлер [1102] установил, что элементный мышьяк количественно экстрагируется четыреххлористым углеродом из растворов 14—17 N НдЗО д содержащих не менее 8 мг/мл КВг. Предполагается [147], что мышьяк(У) при этом восстанавливается до мышьяка(П1). При использовании растворов с концентрацией Н2304 выше П N выделяются бром и бромистоводородная кислота, а при концентрации Н2ЗО4 < 10 Л мышьяк не экстрагируется. Спирты, кетоны и эфиры, хотя и экстрагируют бромид мышьяка из растворов, [c.125]

    В другом методе [388] мышьяк удаляют отгонкой после разложения пробы смесью соляной кислоты с бромом. Для повышения чувствительности определения ряда элементов (Си, Мп, РЬ) в концентрат вводят Na l. Используют кварцевый спектрограф средней дисперсии, дуга постоянного тока (15 а). Эталоны готовят на основе угольного порошка. Метод позволяет определять А1, Fe, Са, Mg, Мп, Си, Ni, Pb, Sb и Сг при их содержании 10 % с коэффициентом вариации 30%. Для повышения чувствительности определения фосфора до 6-10 % вводят Ag l. [c.188]

    Другим, весьма существенным, ограничением ядерно-фнзиче-ского характера является образование в результате побочных ядерных реакций радиоактивного изотопа, по которому осуществляется детектирование определяемого элемента [52]. На практике это означает определенную вероятность возникновения радиоактивных изотопов из других составных частей образца. Так, например, при активационном определении мышьяка по реакции As (n, y)As изотоп As может возникать из сопутствующих элементов-примесей (селен, бром) по реакциям Se (n, p)As Br (n, а) As Se (у, p)As  [c.141]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Во всех методах, основанных на образовании мышьяковистого водорода, мышьяк должен находиться сначала в трехвалентном состоянии. Должны отсутствовать азотная кислота, хлор, бром, иод и соединения, образующие в этих условиях сероводород, сернистый ангидрид и фос-фины. Эти вещества легко могут быть удалены кипячением с азотной кислотой последняя же в свою очередь может быть удалена выцариванием с серной кислотой до появления густых паров. При такой обработке мышьяк переходит в пятивалентный и должен быть перед определением восстановлен, лучше всего сульфатом железа (П). [c.313]

    Если при кипячении породы с разбавленной соляной кислотой выделяется сероводород, то это является определенным указанием на присутствие растворимого в кислотах сульфида, обычно пирротина, но иногда и лазурита. Если можно при помощи магнита извлечь частицы, дающие реакцию на серу, то это доказывает, что причиной выделения сероводорода, по крайней мере частичной, является присутствие пирротина (магнитного колчедана). Реакция на серную кислоту в профильтрованном растворе указывает на присутствие в породе растворимого в кислоте сульфата, большей частью в виде силикатных сульфатов нозеана и гаюина. Если хорошо промытый остаток после обработки разбавленной соляной кислотой обработать царской водко11 или соляной кислотой с бромом и в результате этой обработки в растворе снова образуются сульфат-ионы, то это указывает на вероятное содержание в пробе пирита. Если в полученном прп такой обработке растворе можно обнаружить присутствие мышьяка, то возможно, что в породе был арсенонирит, хотя в изверн енных породах он встречается крайне редко. [c.1029]

    Поэтому более надежным является прямое определение этих загрязняющих примесей из отдельных навесок. Для определения м ы ш ь я к а растворяют 50—100 г сырого цинка в разбавленной азотной кислоте, удаляют кипячением азотистую кислоту, прибавляют 2 мл 10 /о-ного-раствора хлорного железа и нейтрализуют сперва концентрированным, а затем разбавленным раствором соды до тех пор, пока не выделится углекислый цинк. Дав осесть в теплом месте, отфильтровывают осадок и растворяют его в соляной кислоте. Прибавив к раствору еще 200 мл разбавленной соляной кислоты, подвергают его перегонке с сернокислым гидразином, осаждают в приемнике мышьяк сероводородом и взвешивают его в виде AsgSg (см. стр. 45) можно также нейтрализовать содержимое приемника и в присутствии избытка двууглекислдй соли оттитровать мышьяк. иодом (см. стр. 46). Для определения сурьмы 50 г сырого цинка растворяют в смеси брома с соляной кислотой, удаляют кипячением бром и пропускают в горячий, не слишком кислый раствор сероводород до тех [c.585]

    Указанные авторы позднее упростили свой метод, причем они заменили иод более дешевым бромом и сократили продолжительность определения. Согласно этому измененному способу, который принят в Германии как оффициальный, определение мышьяка в сальварсане, в натриевой соли сальварсана, неосальварсане и сульфоксилсальварсане производится следующим образом. [c.319]

    Мышьяк. По Германской Фармакопее (VI) остаток, полученный при определении содержания окиси висмута, растворяют при нагревании ъ Ъ мл соляной кислоты и раствор нагревают в течение четверти часа на водяной бане с 5 мл раствора гипофосфита натрия. Смесь не должна при этом окрашиваться в темный цвет (см. Основной азотнокислый висмут, стр. 331). Британская Фармакопея 1914 г. требует, чтобы в 1 ООО ООО частей препарата содержалось не более 2 частей мышьяка (AsgOg). Проба на мышьяк производится, как описано при основном азотнокислом висмуте (стр. 332). Смесь 5 г основного салициловокислого висмута, 1 г гидрата окиси кальция и 5 мл воды высушивают досуха в фарфоровом тигле и затем прокаливают. Остаток растворяют в 20 мл соляной кислоты, содержащей бром, и в 10 мл воды. Для удаления избытка брома к раствору прибавляют достаточное количество раствора хлористого олова. Из этого раствора отгоняют 20 мл, разбавляют их 40 мл горячей воды и прибавляют 3 капли раствора хлористого олова. С полученным таким образом раствором и производят испытание на As. [c.335]

    Бром разрушает некоторые индикаторы, что приводит к необратимому изменению окраски титруемого раствора. Предлагается несколько индикаторов. Метиловый оранжевый и нафтол синечерный ведут себя как необратимые индикаторы, причем последний оказался предпочтительнее. Обратимый индикатор и-этокси-крезолидин [8], по-видимому, является лучшим индикатором. Методика, по существу, та же, что приведена в разделе Арсенаты и арсениты с использованием стандартного раствора бромата. Для определения бромата используют, естественно стандартный раствор мышьяка(П1), к которому из бюретки добавляют испы- туемый раствор бромата. Предельная концентрация НС1, при которой бромат-арсенитная реакция проходит количественно, была рассчитана для двух методов титрование с использованием индикатора (в качестве индикатора применяли солянокислый розанилин) и потенциометрическое титрование [9]. [c.258]

    Когда наряду с бромидом присутствует гипобромит, бромит и бромат, можно проводить определение с применением потенциометрического титрования мышьяком (И1) в щелочной среде [39]. Титрование в отсутствие 0з04 и при введении его в раствор позволяет определять гипобромит и бромит, Бромат определяют, используя тот же титрант в Н2804. Наконец, бромнд определяют, титруя А МОз с использованием серебряного индикаторного электрода вместо платинового, который применяют при титровании [c.271]

    Андерсон и Мадсен [6] разработали два потенциометрических метода для определения бромита и гипобромита. Один из этих методов, в котором бромит титруют мышьяком (III) в присутствии катализатора 0s04, также применим для определения одного бромита или бромита в смеси с броматом и бромидом. Метод приведен в разделе Гипобромит . Норкис и Стильджен [7] распространили метод определения бромата и бромида на определение гипобромита и бромита. Описание методики приведено в разделе Бромат . [c.279]

    Во второй части книги описаны следующие методы, в которых применяется титрованный раствор тиосульфата определение мышьяка (V), сурьмы (V), гексацианоферратов (П1), хлора, брома, гипохлоритов, иодатов, броматов, кобальта в виде С02О3, меди, никеля в виде NI2O3, золота (П1), кислорода в присутствии гидроокиси марганца (П), озона, перекиси водорода, селена (VI), теллура (VI), селена (IV), таллия (III), сульфида цинка после добавления избыточного количества иода (обратным титрованием) и т. д. [c.571]


Смотреть страницы где упоминается термин Мышьяк III определение бромом: [c.146]    [c.519]    [c.148]    [c.274]    [c.20]    [c.337]    [c.1033]    [c.46]    [c.280]    [c.167]    [c.78]   
Новые окс-методы в аналитической химии (1968) -- [ c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Мышьяк в броме



© 2025 chem21.info Реклама на сайте