Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель определение бромом

    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]


    Уже после однократного прохода через контакт содержимое приемника состоит из смеси а-олефина и триэтилалюминия. В данном случае первый продукт можно пропустить через аппарат вторично, при этом целесообразно отделить под вакуумом (при возможно более низкой температуре) легкокипящую часть олефинов в охлаждаемый приемник. Продукт, выходящий из реактора, должен быть илн бесцветным или желтоватым. При работе со свежей загрузкой катализатора первые порции продукта часто бывают коричневыми и содержат большое количество коллоидального никеля. Такие продукты не пригодны для дальнейшей перегонки. Для отбора пробы и для извлечения продукта из реактора в самой нижней части приемника устроен кран. Результаты отщепления олефина могут быть легко проверены с помощью количественного алкоголиза пробы (см. стр. 130) в комбинации с определением алюминия (СгНе А1 = 3 1). Возможно также титрование небольшой пробы углеводородов, полученных при гидролизе бромом. Каждая стадия реакции достройки соответствует после полного вытеснения образованию определенного числа двойных связей на 1 л. При опыте длительностью [c.239]

    Для определения менее 0,5% никеля рекомендуется фотометрический метод, описанный на стр. 71. В основу этого метода положена реакция образования винно-красного комплексного соединения при добавлении диметилглиоксима к аммиачному раствору никелевой соли в присутствии брома Вместо брома можно использовать и другие окислители, в том числе иод и персульфат калия Для предотвращения гидролиза солей титана в раствор добавляют цитрат-ион. [c.69]

    Пробу, содержащую 2—100 мкг никеля, упаривают до объема 10 мл. Если в растворе присутствуют мешающие определению вещества, их предварительно удаляют. Прибавив к пробе 2 мл 3°/о-ной перекиси водорода, осаждают гидроксид железа (III) раствором аммиака, осадок отфильтровывают. Хромат- и дихромат-ионы восстанавливают в кислой среде сульфитом натрия, гидроксид хрома осаждают вместе с гидроксидом железа (III). Медь осаждают сероводородом при pH 2. К упаренной до объема 10 мл пробе прибавляют 2 мл насыщенного раствора брома в воде и количественно переносят ее в мерную колбу на 25 мл. В колбу приливают 3 мл раствора аммиака (пл. 0,91 г/см ), 1 мл раствора диметилглиоксима, разбавляют водой до метки и перемешивают. Оптическую плотность полученного раствора измеряют на фотоэлектроколориметре. Раствор сравнения готовят, приливая к 10 мл воды все перечисленные выше реактивы и воду до объема 25 мл. [c.429]


    Ход определения. В мерную колбу или цилиндр Несслера емкостью 100 жл помещают 50 мл пробы, если надо, предварительно разбавленной или сконцентрированной так, чтобы в этом объеме содержалось 0,01—0,25 мг никеля. Прибавляют 10 мл насыщенного раствора брома и смесь перемешивают. После того прибавляют 12 мл раствора аммиака, 4 мл (раствора диметилглиоксима и доливают дистиллированной водой до метки. Одновременно проводят холостой опыт с 30 мл дистиллированной воды. Из величины оптической плотности пробы вычитают величину оптической плотности холостого определения и по калибровочной кривой находят содержание никеля. [c.309]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    С целью установления возможного источника битума в [368] проведен НАА прибрежных морских битумов. Использование более короткого времени облучения (по сравнению с предыдущими методиками) также позволило установить в исследуемых образцах битумов концентрации брома, кобальта, хрома, сурьмы, скандия, цинка, ванадия и никеля. Здесь же показано, что полиэтиленовая ампула, применяемая для упаковки образцов, содержит в своем составе примеси, мкг кобальта — 0,0194 цинка — 0,232 хрома — 0,09 брома — 0,042 скандия — 0,0017 сурьмы — 0,0097. Для определения четырех элементов в арабской нефти-367 использовали сочетание двух детекторов Ое(Ь ) для ванадия, брома, натрия и Ма1(Т1) для серы. Основным мешающим элементом для анализа был алюминий, который содержится в контейнере. Применение НАА в [369] позволило установить концентрацию ртути в 29 образцах нефтяных остатков, собран- [c.91]

    Для фотометрического определения никеля чаще пользуются тем, что никель с диметилглиоксимом при введении окислителей образует красно-бурое, растворимое в воде соединение. Состав и строение его точно не установлены. По одним предположениям, это — соединение трех- или даже четырехвалентного никеля с диметилглиоксимом по другим — соединение двухвалентного никеля с продуктом окисления диметилглиоксима. Вопрос о строении трудно разрешим, так как оба компонента (никель и диметилглиоксим) способны окисляться. Аналогично этому трудно решить вопрос о характере соединения, образующегося при введении, например, перманганата или персульфата в смесь К1 и КВг. При этом образуется соединение иода с бромом,, которое в равной степени можно рассматривать и как 1+Вг (бромид иода) и как Вг+1 (иодид брома). В подобных случаях вопрос можно решить косвенным путем, установив, какой из компонентов легче окисляется. Известно, что иод окисляется легче, что дает основания принять формулу бромида иода. Опыт показывает, что диметилглиоксим довольно легко окисляется даже слабыми окислителями, тогда как никель (II) окисляется значительно труднее. Поэтому имеется больше оснований считать, что названное соединение является комплексом двухвалентного никеля с некоторым продуктом окисления диметилглиоксима (возможно, типа нитрозо-оксима). [c.303]

    Ход определения. В отсутствие мешающих определению металлов. Отбирают такой объем пробы (или раствора, полученного после разложения комплексных соединений выпариванием с азотной и серной кислотами), чтобы в нем содержалось от 2 до 100 мкг никеля, упаривают раствор до 10 мл, прибавляют 2 мл насыщенной бромом воды, перемешивают и количественно переносят в мерную колбу вместимостью 25 мл. Приливают 3 мл концентрированного раствора аммиака, 1 мл раствора диметилглиоксима, разбавляют дистиллированной водой до метки и перемещивают. Через 10 мин измеряют оптическую плотность полученного раствора при Я = 445 нм в кювете с толщиной слоя в 1 или 5 см. [c.139]

    Химико-спектральное определение алюминия, висмута, железа, индия, кадмия, магния, марганца, меди, никеля, свинца, серебра, сурьмы, титана, хрома и цинка в броме, азотной, бромистоводородной, соляной и фтористоводородной кислотах..................513 [c.528]

    Ход определения. Отбирают такой объем пробы, чтобы в нем содержалось от 2 до 100 мкг никеля, и, если проба содержит железо, хром или медь, удаляют эти металлы, как указано выше. Затем упаривают раствор до 10 мл, прибавляют 2 мл насыщенного раствора брома в воде, перемешивают и количественно переносят в мерную колбу емкостью 25 мл. Приливают 3 мл [c.182]

    Определение никеля при окислении бромной водой [1106]. К раствору, содержащему 5 мкг N1, добавляют 10 капель бромной воды, такое количество концентрированного раствора ЫН ОН, которое необходимо для полного исчезновения окраски брома, и еще избыток его 1 мл. Затем добавляют к охлажденному до комнатной температуры раствору 1 мл диметилдиоксима и разбавляют водой до объема 25 мл. Через 5 мин. измеряют оптическую плотность растворов. [c.111]

    Применение персульфата аммония в качестве окислителя рекомендовано рядом автором[25, 96,300]. Как окислитель также широко используется для определения, никеля в сталях бром [293, 300, 601, 920, 1181), иод [197, 257, 571], гипохлорит [809]. [c.147]


    Для определения никеля в свинце и бронзах, содержащих свинец и олово [969], и типографских сплавах [1411 рекомендуется экстрагировать диметилдиоксимат никеля и измерять оптическую плотность экстракта. При определении никеля в кобальте [339] последний отделяют экстракцией высокомолекулярными амминами и в водной фазе определяют его фотометрически с использованием PAN. Для определения никеля в присутствии кобальта и железа последнее отделяют экстракцией изопропиловым эфиром из 6—8 N H l, кобальт связывают в комплексное соединение с K N, никель экстрагируют хлороформом [1049]. Из хлороформного экстракта никель извлекают 0,5 N НС1 и в водном растворе определяют фотометрическим методом диметилдиоксимом в присутствии брома в щелочной среде. [c.148]

    Бланк с сотр. [44] предложил метод определения следов никеля в чистых галогенидах. Сущность метода заключается в концентрировании никеля экстракцией его диметилдиоксимата хлороформом и определении после реэкстракции диметилдиоксимом и бромом в водной среде в присутствии аммиака. Определяемый минимум 1 10 % никеля (5 мкг из навески соли 5 г). [c.158]

    Кроме перечисленных выше элементов, в зерне злаков содержится марганец, медь, цинк, бор, алюминий, йод, кобальт, никель, молибден, фтор, селен, бром, титан, олово, мышьяк, литий, ванадий, барий, стронций, цезий, рубидий и многие другие элементы. Многие из этих элементов играют определенную роль как микроэлементы в жизни растений и животных. [c.364]

    Колориметрическое определение никеля. Полученный жидкий концентрат, содержащий никель и магний, переносят в мерную пробирку с притертой пробкой и добавляют к нему воду до 5 мл и 5 капель бромной воды. Через 3 мин раствор нейтрализуют концентрированным раствором аммиака до исчезновения окраски брома и добавляют еще 3—4 капли того же раствора аммиака. Затем в пробирку приливают 0,5 мл 1 %-ного раствора диметилглиоксима, доводят объем до 10 мл водой и через 10 мин (время, необходимое для стабилизации окраски) колориметрируют, наблюдая окраску через весь слой жидкости по оси пробирки на фоне белой бумаги. [c.352]

    В тех случаях, когда необходимо подчеркнуть применимость данного реактива или препарата для определенной цели или отсутствие в нем некоторых примесей, после названия реактива указывается его дополнительная квалификация, а затем степень его чистоты. Например, бензол для криоскопии хч , магний окись для люминофоров хч , марганец сернокислый для спектрального анализа чда , судан Ж краситель для микроскопии чда , бром-тимоловый синий (индикатор) чда , глицин фото ч , кальций окись для хроматографии чда , кобальт сернокислый без никеля чда , калий бромистый фармакопейный ч и т. д. [c.17]

    Металлы и неметаллы играют известную роль и в аналитической химии. Большая группа металлов — алюминий, железо, цинк, магний, олово, никель — применяются в качестве восстановителей. Натрий используют для определения хлора в органических веществах, при восстановлении и гидрировании многих органических соединений, для глубокой осушки органических жидкостей, для приготовления амальгам и т. д. Бром служит окислителем при аналитических определениях марганца, никеля, хрома, висмута, железа, цианидов, роданидов, мочевины, муравьиной кислоты. [c.20]

    Реакция карбонила никеля с бромом идет настолько энергично и полно, что ее с успехом используют для аналитических определений [123а]  [c.202]

    Кроме методов, основанных на сжигании органически связанной серы, имеется стандартизованный метод (ГОСТ 13380—67). Серу определяют восстановлением ее катализатором — активным никелем Ренея — в сульфид никеля, разложением сульфида кислотой и титрометрическим определением выделившегося сероводорода раствором у1 суснокислой ртути. Метод пригоден для топлив с невысоким содержанием непредельных углеводородов (бромное число не более 10 г брома/100 г). Этим методом можно определить 0,00002% серы в топливе. Расхождения результатов параллельных определений не превышают 10% отн. Недостаток метода — необходимость работы с пирофорным продуктом (активный никель Ренея). Имеются и другие методы определения серы, используемые при исследовательских работах. [c.151]

    Очень удобно проводить определения по высоте пика, который образуется на хроматограмме осадком анализируемого элемента. Этот метод был предложен В. Б. Алесков-ским с сотрудниками [171—1731 для определения никеля и меди, а затем для определения микроколичеств иода, брома, хлора и роданида на бумаге, импрегнированной соответствующими растворителями. На бумаге (6x16 см) проводят карандашом линию погружения бумаги в растворитель на расстоянии 0,5 см от края бумаги и линию старта на расстоянии 2—2,5 см от того же края. На линии старта на равном расстоянии друг от друга наносят растворы определяемых ионов проградуированным стеклянным капилляром объемом 0,002— 0,003 мл. Полоску бумаги с нанесенными на нее пробами подсушивают на воздухе, а затем опускают до линии погружения в стакан емкостью 500 мл с 50 мл воды или водного раствора глицерина (глицерин придает подвижному )астворителю необходимую вязкость и гигроскопичность). Лолоску закрепляют в стакане вертикально (рис. 54)..Продвигаясь вверх по бумаге, растворитель захватывает непрореагировавшие количества определяемого иона, образующийся осадок образует след в виде правильного пика, высота которого при прочих равных условиях зависит от концентрации определяемого вещества и от количества осадителя. Через 30—45 мин после образования пиков хроматограмму высушивают на воздухе и измеряют линейкой высоту пиков. Из результатов 5—10 опытов находят сред- [c.214]

    Методика определения в цитратном растворе сводится к следующему [1037]. Анализируемый раствор, содержащий от 1 до 10 жкг Со, должен быть почти нейтральным и иметь объем около 5 мл. Минеральные кислоты предварительно удаляют выпариванием. Прибавляют 10 мл 0,2 М раствора ли.чон-ной кислоты и 1,2 мл фосфатно-боратного буферного раствора. Последний готовят растворением 6,2 г борной кислоты и 35,6 г двузамещенного фосфата натрия в 500 мл 1 N раствора гидроокиси натрия и разбавлением полученного раствора до 1 л. pH после прибавления буферного раствора должно быть около 8 (контроль по крезолово.му красному). Далее прибавляют точно 0,5 мл раствора нитрозо-К-соли и хорошо перемешивают. Кипятят 1 мин., прибавляют 1 мл концентрированной азотной кислоты и снова кипятят 1 мин. Раствор охлаждают в темном месте и разбавляют до 10 мл, после чего измеряют оптическую плотность при 420. имк. Если предполагают пользоваться при сравнении окрасок колориметром, тогда лучше удалить избыток реагента окислением бромной водой. Для этого после прибавления азотной кислоты приливают к раствору 0,5 мл бромной ьоды, оставляют на 5 мин. и удаляют затем избыток брома кипячением раствора. Не мешают 10 мг железа и меди и 0,1—0,2 мг никеля. [c.140]

    Определению мешают кедь, кадмий, свинец, никель, кобальт, висмут, ртуть, индий, таллий, серебро, золото, палладий, хлор, бром, иод, железо (III), перекиси [c.319]

    Оксиматы. Д1Шетилглиоксим остается наиболее распространенным реактивом для отделения и фотометрического определения никеля с помощью экстрагирования. Экстракция диметилглиок-симата никеля и фотометрирование полученного экстракта применены для определения никеля в кобальте и его солях [202], в черных и цветных металлах [203], в металлическом уране [204, 205], в свинцовых и свинцово-оловянных бронзах [206]. Описаны методики, по которьш фотометрическое определение никеля заканчивают после реэкстракции и окисления диметилглиоксима-та никеля иодом. Этот принцип использован при определении никеля в металлическом бериллии, соединениях бериллия, цирконии и цирколое [207] и в растворах для получения электролитического цинка (комплекс окисляют бромом) [208]. Предложены и другие варианты фотометрирования никеля 1209 210]. [c.244]

    Ход определения. Отбирают такое количество анализируемой сточной воды, чтобы в ней содержалось 5—30 мкг никеля воду переносят в колбу емкостью 150—200 мл, разбавляют (или упаривают) приблизительно до 80 мл, прибавляют в колбу 0,5 мл азотной кислоты и нагревают до кипения. Затем охлаждают, прибавляют 5 мл винной кислоты (или лимонной кислоты, или сегнетовой соли), 4мл бромной воды и раствор аммиака по каплям до исчезновения окраски брома и, сверх того, еще Л мл. После этого в раствор вливают 0,5 мл раствора диметилглиоксима, переносят в цилиндр Геннера, доводят объем водой до верхней метки и перемешивают. [c.161]

    С относительной погрешностью 1—3% найдено содержание натрия [334] в нефти. При нейтронно-активационном определении [335] примесей мышьяка, меди, брома, никеля, цинка и натрия в нефти пробу (5—7 мл) запаивают в полиэтиленовую или кварцевую ампулу и облучают вместе с монитором потока (серебряная фольга) 10 мин потоком тепловых нейтронов 10 нейтр/см -с или 1 ч потоком 10 нейтр/см -с. Облученную пробу количественно переносят в измерительную ампулу и при помоши 400-канального анализатора с сцинтилляционным детектором измеряют активности указанных радиоизотопов. Рассмотрены некоторые интерферируюшие реакции, мешающие анализу на мышьяк и медь. Показано, что предел обнаружения элементов может составлять, 10 % меди — 0,5, мышьяка — 0,1, брома— 10, никеля — 2, натрия — 0,3. После распада короткоживу-щих радионуклидов алюминия и ванадия в [336] определяют содержания аргона и марганца по фотопикам 1,29 и 0,85 МэВ соответственно. Те же авторы [337] разработали методику нахождения алюминия, ванадия, марганца, цинка и меди в сырой нефти и ее золе. При расчете содержания алюминия учитывают вклад мешающей ядерной реакции (л, р) А1, а также вводят поправку на вклад в анигилляционный гамма-пик 0,51 МэВ комптоновского рассеяния от гамма-линий радиоизотопа натрия-24. Для определения указанных элементов предложено три режима облучения 2, 10 и 20 мин. Относительная погрешность метода для ванадия, алюминия и меди составляет 8, 10 и 9% соответственно. Аналогичный способ использовали [347—349] для анализа на ванадий, натрий, алюминий, марганец в продуктах переработки нефти. [c.89]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    В связи с этим режим облучения и время охлаждения выбирали с учетом уменьшения влияния излучения радионуклидов основы на фотопики определяемых радиоизотопов. Условия определения ванадия, никеля, марганца, натрия, хлора, брома и серы даны в табл. 1.23. [c.101]

    Мешающие вещества. Вместе с хлоридами титруются броми-ды и иодиды. Их можно определить отдельно соответствующими методами и содержание их вычесть из результатов титрования. Сульфит-, тиосульфат-, сульфид-, роданид- и цианид-ионы, мешающие определению, следует предварительно окислить кипяче нием с пероксидом водорода в щелочной среде. Органические ве щества в большой концентрации мешают определению. Их сле-> дует предварительно удалить, как описано в разд. 7.14.7.1, или окислить перманганатом калия в щелочной среде с последующим восстановлением пероксидом водорода и отфильтровыванием осадка водного диоксида марганца. Мешает железо(III) в концентрациях, превышающих 10 мг/л его следует связать добав-лением нескольких капель 5 %-ного раствора фосфата натрия. Мешают ионы цинка, свинца, алюминия, никеля и хрома(III) в концентрациях, превышающих 100 мг/л, а хромат ионы в концентрациях выше 2 мг/л. [c.224]

    При проведении этих анализов следует использовать специальные де тали и детекторы, в том числе пити катарометра, сделанные из никеля 1446,448—450,453, 460], а также фторированные носители и стационарные фазы [4()0, 466]. Были разделены токсические газы, содержащие фосген [116, 419, 452, 467—469а]. Удалось провести определение ионов хлора и брома [470] в водных растворах после удаления, галогенводородов. Ион фтора удалось определить в виде фторсилана [471]. Было опубликовано сооб1цение об анализе чистоты HG1 [472]. [c.274]

    Можно было бы привести примеры концентрирования, включающие использование и других экстрагентов. Микроколичества галлия извлекали из растворов НС1 с помощью ДЭЭ (или ДИПЭ) при определении его в бокситах [635], индии высокой чистоты [637], различных горных породах [633,] бутилацетатом — при определении в алюминии высокой чистоты [665] и в цинке [660]. Железо концентрировали амилацетатом из H I при определении его в Ti l4[1836], трибутилфосфатом из роданидного раствора при определении в металлическом никеле [800, 802]. Таллий, содержа щийся в рудах, выделяли бутилацетатом из 1 ilf НВг в присутствии свободного брома. Тантал экстрагировали из фторидных растворов МИБК, определяя его в серебре [1548] и циклогексаноном — при определении в цирконии [1543]. Иодидные комплексы РЬ, d, In, Bi, u и Sb концентрировали МИБК нри определении названных элементов фотометрическими методами в металлическом железе, кобальте, цинке, хлоридах алюминия и хрома н других объектах [610]. [c.313]

    Диметилдиоксим В щелочной среде в присутствии окислителя никель образует с диметилдиоксимом интенсивно окрашенное в красный цвет соединение 1641]. Кривая светопоглощения показана на рис. 13 (соединение получено в присутствии МН40Н и К аОН) [260, 7681. Вероятно, состав комплексов, образующихся через разные промежутки времени, неодинаков. Одно соединение содержит два моля диметилдиоксима на один атом никеля, другое — четыре моля диметилдиоксима на один атом никеля. Диметилдиоксим в присутствии окислителя был использован для фотометрического определения никеля [1089]. В качестве окислителя использовались бром [381, 571, 920, 942, 966, 989, ИЗО], иод [713, 729, 755], персульфат аммония [97, 774, 943] и др. [c.110]

    Тарасевич Н. И. Об отделении меди, никеля, кобальта и цинка от алюминия при помощи этилендиамина. Вестн. Моск. ун-та, 1948, № 5, с. 91—95. Библ. 6 назв. 5776 Тарасевич Н. И. Новый ускоренный весовой метод определения серебра [в виде бром-азимндобензола серебра. Вестн. Моск. уи-та, 1948, № 10, с. 161—168. Библ.  [c.221]

    Семь элементов-металлов — железо, кобальт, марганец, натрий, калий, кальций, магний — играют решающую роль в основных процессах жизнедеятельности и относятся к числу биогенных элементов. Перечень этот сократить нельзя, но можно расширить. По крайней мере, еще десяток элементов имеют существенное значение для нормального существования организмов медь, цинк, молибден, никель, ванадий, хлор, бром, иод. Некоторые из легчайших атомов — литий, бериллий, бор — присутствуют в небольших количествах в большинстве растений и животных. Определенным типам клеток обязательно нужен кремний и, вероятно, в некоторых случаях еще и фтор. Подавляющее большинство перечисленных элементов составляют члены 2—3-го периода таблицы Д. И. Менделеева. [c.175]

    В. Определение никеля. Полученный жг.дкий концентрат переносят в. мерную пробирку с пришлифованной пробкой и добавляют к не.му воду до 5 мл и 5 капель бромной БОДЫ, Через 3 мин раствор нейтрализуют растеороы аммиака до исчезновения окраски брома и добавляют еще 3 — 4 капли расгвора аммиака. Затем приливают 0,5 мл раствора диметилглиоксима, доводят объе.м до 10 ыл водой и через 10 мин колориыетрт1руют. [c.573]

    Метод был применен и для анализа смеси галогенидов [9]. Когда в анализируемом растворе присутствуют бромид и иодид, одну аликвотную часть анализируемого раствора обрабатывают нитратом серебра, а осадок окисляют хромовой кислотой. Иодид окисляется до иодата, а выделяющийся бром удаляют, пропуская через раствор ток воздуха. Затем иодат опять восстанавливают до иодида и осаждают в виде иодида серебра для количественного определения. Во второй части раствора оба галогенида серебра растворяют в тетрацианиде никеля и выделившиеся ионы никеля (П) титруют стандартным раствором ЭДТА, получая сумму бромида и иодида. Бромид находят по разности. [c.265]

    Колориметрическое определение ионов никеля основано на его способности образовывать комплексное соединение малиново-красного цвета при взаимодействии в щелочной среде с диметилглиок-симом и окислителем. В качестве окислителя применяют бром, иод или персульфат аммония. [c.419]


Смотреть страницы где упоминается термин Никель определение бромом: [c.506]    [c.343]    [c.116]    [c.377]    [c.377]    [c.61]    [c.102]    [c.1033]    [c.189]    [c.280]   
Новые окс-методы в аналитической химии (1968) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Никель определение



© 2025 chem21.info Реклама на сайте