Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектр плавления

Рис.5. Спектры плавленного кварца,рассчитанные яа основе модельной кривой по методу Крамерса - Кронига. Рис.5. Спектры плавленного кварца,рассчитанные яа основе модельной кривой по <a href="/info/836636">методу Крамерса</a> - Кронига.

Таблица 3 Положение и интенсивность полос в спектрах плавленного и кристаллического кварца Таблица 3 Положение и <a href="/info/50597">интенсивность полос</a> в спектрах плавленного и кристаллического кварца
    На рис. 11.129 представлены заимствованные из статьи [71] фотоэлектрические записи в естественном свете спектров стекол натриевосиликатной системы. На рис. 11.133—11.136 показаны также поляризационные спектры плавленого кварца и стекол, содержащих 20, 30, 33,3 [c.207]

    Рпс. 11.138. Фотоэлектрическая запись поляризационного спектра плавленого кварца  [c.207]

    Ниже описаны возможные методы синтеза чистых веществ, позволяющие получать их в необходимых количествах из доступного сырья за короткое время. Чистоту полученных веществ можно проверить по температуре плавления, хроматографическим методом н по ИК-спектру. [c.190]

    По составу, температуре плавления пикратов и по УФ-спектрам [c.117]

    Для некоторых веществ конформация в твердой фазе может зависеть от условий замораживания вещества. Например, при охлаждении 1,1,1-трифтор-З-хлорпропана ниже —103,4° С образуется кристаллическая модификация, в которой все молекулы имеют одинаковую гош-конформацию. При температурах от —103,4°С до температуры плавления вещества (—93,8° С) в кристалле находятся в равновесии оба поворотных изомера, что фиксируется по появлению в колебательном спектре полос анти-изомера. Если же очень быстро охладить вещество жидком азотом (—196° С), то при этом вымораживаются обе конформации, но равновесия между ними нет из-за невозможности преодоления потенциального барьера при низкой температуре. При нагревании такого образца до —157° С все молекулы переходят в гош-конформацию. [c.221]

    II и к и т и н В. П., Покровский Е. II. Определение кристалличности и температур плавления полиэтилена методом инфракрасных спектров поглощения. Докл. АН СССР, 1954, 95, № 1, 109—110. [c.657]

    Так как органические полимеры являются менее жесткими по сравнению с неорганическими кристаллами или стеклами, для них существенными могут оказаться процессы миграции зарядов. Они состоят в том, что при разогреве облученного полимера часть глубоких ловушек разрушается или начинает мигрировать в его объеме еще до того, когда из них освобождаются захваченные электроны. Миграция ловушек и их разрушение сопровождаются рекомбинацией связанных зарядов в отличие от рекомбинации электрона с дыркой . Миграции ловушек со стабилизированным зарядом становятся все более вероятными по мере размораживания подвижности отдельных звеньев, сегментов и макромолекул как целого. Таким образом, скорость высвечивания образца полимера при некоторой фиксированной температуре будет определяться временем релаксации определенной группы атомов макромолекул. Так как спектр фотолюминесценции полимера, облученного при 77 К, практически не меняется во время его нагревания вплоть до размягчения (или плавления), можно сделать вывод, что его РТЛ происходит за счет рекомбинации зарядов, захваченных в [c.238]


    В отличие от геометрических изомеров энантиомеры эквивалентны по своим физическим и химическим свойствам. У них одинаковые температуры плавления и кипения, давление пара, плотность, показатель преломления, для неполяризованного света — колебательный и электронный спектры, одинаковая реакционная способность к ахиральным реагентам. [c.168]

    Идентификация органических соединений обычно проводится сопоставлением физико-химических констант (температуры плавления, температуры кипения, коэффициента преломления, плотности), хроматограмм или спектров полученных веществ с табличными константами, хроматограммами и спектрами эталонов. [c.248]

    Энтропия плавления — одна из важнейших термодинамических характеристик процесса перехода вещества из твердого состояния в жидкое. Она является мерой разупорядочения кристалла, сопровождающего плавление, не только в смысле изменения расположения атомов и конфигурации колебательного спектра, но также в смысле изменения характера химической связи, если процесс [c.125]

    Колебательная составляющая энтропии плавления определяется изменениями в спектре колебаний атомов при переходе из твердого состояния в жидкое. Процесс плавления с точки зрения изменения характера колебательного спектра системы характеризуется снижением максимальной частоты колебаний частиц за счет определенного ослабления сил сцепления и прочности межатомных связей при переходе из твердого состояния в жидкое. Колебательные спектры кристалла и расплава при температуре плавления достаточно хорошо аппроксимируются эйнштейновским приближением. [c.126]

    ВОДОРОДНАЯ СВЯЗЬ — соединение посредством атома водорода двух атомов разных молекул или одной молекулы. В. с. возникает между атомами кислорода, азота, фтора, реже—хлора, серы и др. С наличием В. с. связаны такие свойства веществ, как ассоциация молекул и обусловленное ею повы-ш епие температуры плавления и кипения, особенности в колебательных и электронных спектрах, аномалии в растворимости и др. (см. Вода). Благодаря [c.57]

    На рис. 7.19 приведена схема спектрографа ИСП-28 с кварцевой оптикой (нз плавленого кварца 5102), пропускающей УФ-излу-чение, и фотографической регистрацией спектра. Полученную этим методом спектрограмму фотометрируют, т. е. почернение каждой [c.177]

    Для ультрафиолетовой и видимой областей спектра выпускается двойной монохроматор ДМР-4 со сменной оптикой из плавленого кварца или из стекла. Свет последовательно проходит два одинаковых монохроматора, что позволяет резко уменьшить количество рассеянного света. [c.147]

    Спектральная чувствительность фотоэлементов зависит, главным образом, от материала катода и его обработки, что позволяет в довольно широких пределах менять работу выхода электронов на катоде фотоэлемента, и тем самым меняют длинноволновую границу чувствительности фотоэлемента. На рис. 118, б показана спектральная чувствительность различных типов катодов. В зависимости от рабочей области спектра применяют фотоэлементы с разными катодами. Например, для работы в ультрафиолетовой области и в видимой вплоть до А, = = 6000 А применяют фотоэлементы с сурьмяно-цезиевым, а в области более длинных волн с кислородно-цезиевым катодом. При выборе фотоэлемента следует обращать также внимание на прозрачность его колбы. Так, для работы в ультрафиолетовой области колба фотоэлемента должна быть изготовлена из плавленого кварца или увиолевого стекла. [c.188]

    При работе со спектрами испускания нас интересует излучение возбужденных атомов и ионов вещества, находящегося в газообраз-1ЮМ состоянии. Но в большинстве случаев образец, поступающий на анализ,— твердое вещество, до возбуждения должен пройти сложный путь плавление, испарение и диссоциацию молекул на отдельные атомы. При анализе жидких проб — растворов или расплавов — исключается стадия плавления, а при работе с газами остаются только две стадии — диссоциация н возбуждение. [c.235]

    В ультрафиолетовой области спектра для получения сплошного излучения применяют газовый разряд. Использовать излучение твердых тел обычно оказывается невозможным, так как для получения интенсивного свечения в ультрафиолетовой области необходимо нагреть их до температуры более высокой, чем температура плавления (и кипения) любого вещества. [c.300]

    Проведены также работы по радиационной полимернзации пропилена при 5000—-17000 ат и 21, 48 и 83° С [42, 43]. При этом максимальная степень полимеризации доходила до 75, радиационнохимический выход полимера до 108 000, степень превращения до 20%- ИК-спектр радиационного полипропилена сходен со спектром плавленного полимера Циглера — Натта. Пропильные и винильные группы присутствуют в малых количествах. Полипропилен растворим в бензоле при комнатной температуре. Иногда растворы опа-лесцируют. Результаты работы указывают на радикальный меха-ханизм полимернзации [42]. [c.121]


    Методы 1—4 действительно позволяют производить разделение углеводородов и классов углеводородов по их свойствам температуре киПения, температуре плавления, адсорбции или растворимости. Методы же 5—7 не могут быть использованы для разделения углеводородов. Они позволяют определять физические свойства, упоз1Янутые выше в методе 5, или же спектры углеводородов. [c.13]

    Распределение и структура парафиновых боковых цепей в тяжелых нефтяных фракциях изучены совершенно недостаточно. Присутствие длинных парафиновых боковых цепей нормальной (линейной) структуры (выше С а) по крайней мере в товарных смазочных маслах с низкой температурой застывания, по-пидимому, невозможно. Известные алкиларомати-ческие и циклопарафиновые углеводороды с длинной нормальной боковой цепью обладают высокими температурами плавления и могут быть отделены от твердого парафина при помощи дспарафинизации. Алкилциклические углеводороды с длинными разветвленными парафиновыми боковыми цепями должны иметь низкую температуру застывания и могут встречаться в смазочных маслах. Однако более вероятно, что атомы углерода в боковых цепях распределяются между несколькими боковыми цепями. В настоящее время исследование спектров поглощения в инфракрасной и в ближней инфракрасной области служит единственным методом, который может дать известное представление о распределении парафиновых боковых цепей, по определению среднего числа СНд-, СН - и СН-групп, приходящихся на одну молекулу. [c.37]

    Расчет теплоты сублимации основан на том факте, что интенсивность пиков в спектре прямо пропорциональна давлению пара образца в ионном источнике. Образец помещают в емкость с отверстием очень небольшого диаметра (ячейка Кнудсена), соединяющим ее с ионным источником, поэтому вещество может попасть в источник только за счет диффузии чфез это отверстие. Если ячейка термостатирована и в ней имеется достаточное количество образца, так что часть его всегда находится в твердом виде, то теплоту сублимации образца можно определить, исследуя изменения интенсивности пика (которая связана с давлением пара) в зависимости от температуры образца. Небольшое количество образца, диффундирующее в ионный источник, не оказывает заметного влияния на равновесие. При таких исследованиях были получены интересные результаты относительно природы частиц, присутствующих в паре над некоторыми твердыми веществами, имеющими высокие температуры плавления. В паре над хлоридом лития были обнаружены мономеры, димеры и тримеры, а в паре над хлоридами натрия, калия и цезия — мономеры и димеры [20]. [c.327]

    Поскольку асфальтены образовывали не иетинный раствор, а скорее всего давали коллоидную дисперсию, тонкая структура ИК-сиектра в области поглощения ароматических соединений могла быть потеряна. Для тяжелого масла соотношение алифатических протонов к ароматическим в спектрах ЯМР равнялось 4,01 1, а соотношение метиленовых и метильных протонов было равно 1 1,75, Для асфальтенов эти значения равнялись соответственно 3,49 1 и 1 1,1. Температура плавления асфальтенов равна 146°С. Молекулярная масса, найденная методом осмометрии в парах (с о-ксилолом в качестве растворителя), составила 407. для тяжелого масла и 638 для асфальтенов. Относительные выходы тяжелого масла и асфальтенов из исходных углей и пз деиолиме-ризованного продукта различались незначительно. [c.324]

    Дибензтиофен — кристаллическое вещество, кристаллизующееся из спирта в виде бесцветных игл и имеющее температуру нлавЛенйя 99—100° С при 3 мм рт. ст. перегоняется при температуре 152— 154 С образует пикрат (температура плавления 125° С). Изучение спектров поглощения дибензтиофена в ультрафиолетовой области показало, что имеется полоса сильного поглощения при 230 яг ц и очень сильного при 290 и 325 т [х [66] и что молекула его имеет планарное строение [66]. Изучение спектров комбинационного рассеяния света [67 I показало наличие определенного сдвига линий бен--зольного кольца. Имеются также упоминания о спектрах флуоресценции. [c.353]

    Если атом водорода интенсивно взаимодействует с другим атомом, между ними устанавливается довольно прочная связь, равная 20— 30 кдж моль, которая может хорошо проявляться в спектрах. Она слабее обычной химической связи, энергия которой составляет от 100 до 400 кдж1моль, но достаточна, чтобы вызвать аномально высокие температуры плавления у HF по сравнению с НС1, НВг и HI у Н2О по сравнению с H S, HjSe и Н.Де и у NH3 по сравнению с PHg, АзНз и SbHg, Аномалии вызваны тем обстоятельством, что атомы F более электроотрицательны, чем атомы С1, Вг и 1, атомы О более электроотрицательны, чем атомы S, Se и Те и т. п. [c.79]

    Люминесценция кюветы и окружаюш,его пространства. Часто наблюдается люминесценция кюветы, в которой находится исследуемое вещество. Флуоресценция кюветы рассеивается растворителем, что приводит к возникновению сильного фона. Трудности осо-бенио велики, когда для возбуждения используется свет коротких длин волн. Плавленый кварц сильно флуоресцирует, синтетический кварц флуоресцирует незначительно. При измерении образцов при температуре жидкого азота необходима особая осторожность, чтобы избежать люминесцентного фона. Если кювета помещена в сосуд Дьюара из плавленого кварца, люминесценция последнего может давать очень большой фон, состоящий из флуоресценции и фосфоресценции. Довольно серьезны помехи, вызванные фосфорес-ценцней кюветы при измерении замедленной флуоресценции. В этом случае фон имеет вид истинного сигнала — спектр идентичен быстрой флуоресценции исследуемого вещества. Однако это не истинная замедленная флуоресценция, а быстрая флуоресценция, возбужденная поглощением фосфоресценции кюветы. [c.73]

    Колебательный спектр является однозначной физической характеристикой вещества каждому индивидуальному соединению соответствует свой ИК-спектр, и даже близкие по физическим и химическим свойствам вещества, например изомеры, могут давать сильно различающиеся спектры. Поэтому ИК-спектр более надежен для идситп( )икации индивидуальных соединений, чем традициоп-иые характеристики показатель преломления, температуры плавления или кипения и т. п. Однозначное отнесение спектра возможно только тогда, когда спектры идентифицируемого вещества и эталона не отличаются ни одной из полос, включая и относительные их интенсивности. Если в спектре вещества обнаруживаются лншггие полосы, то это может указывать на содержание в нем примеси, ио если лишние полосы наблюдаются в спектре эталона, то исследуемое соединение и эталон — разные вещества. Наиболее характерные для идентификации полосы находятся в так называемой области отпечатков пальцев (v<1500 см ). При сравнении неизвестных соединений с известными ио их ИК-спект- [c.211]

    Оптические изомеры (энантиомеры) обладают одинаковьпш физическими и спектральными характерргстиками (температуры кипашя и плавления, плотность, показатель преломления, все виды спектров), а различаются только направлением вращения плоскости поляризованного света и образуют кристаллы различной формы (зеркальные отображения). Например, Луи Пастер впервые разделил энантиомеры соли винной кислоты, пользуясь пинцетом и лупой (рис. 8.3). [c.192]

    Другой вид изомерии наблюдался у о,о -азокситолуола, о,о -ааоксиаиизола и аналогичных им соединений, которые существуют в двух фор.мах, отличающихся по температуре плавления и по спектру поглощения. Здесь имеются цис- и транс-изомеры, строение которых может быть изображено с помощью следующих формул (Мюллер)  [c.615]

    Для доказательства структуры продукта восстановления (II) был синтезирова описанный в литературе [2] 1, 4-диокси-3- фен1ИЛ-1,2, 3,4-тетрагидроизохинолин. Смешанная проба веществ, а также их бензоильных производных депрессии температуры плавления не дала. Инфракрасные спектры поглощения в обоих случаях оказались идентичными. Они снимались на приборе ИКС-12 в вазелиновом масле.  [c.48]

    Как показали исследования, спектры материала плавких вставок до проведения ТГХВ и после него практически одинаковы. После проведения ТГХВ на поверхности плавких вставок обнаружены лишь следы хлорвдов и карбонатов определяемых элементов. Следовательно, решающего влияния воздействие агрессивными газами не оказывает. Нарушение целостности плавких вставок можно объяснить только их плавлением под действием высоких температур, а не химическим разрушением. [c.37]

    Поскольку строение молекул СО и N2 аналогично, сходны и их физические свойства. Так, как и азот, СО имеет очень низкую температуру плавления (—204°С) и кипения (—191,5°С) стандартная энтропия СО (197,3 дж1град-моль) близка таковой азота (191,3 дж1град)4 хмоль)] в твердом состоянии оксид углерода (И), как и азот, существует в виде двух модификаций (кубической и гексагональной) плохо растворяется в воде и т. д. Сходство проявляется также в структуре спектров СО и N3. [c.460]

    Повышение температуры, если только при этом в системе не происходит необр-атимых химических изменений, обычно препятствует застудневанию из-за возрастания интенсивности микроброу-новского движения сегментов и уменьшения вследствие этого числа и длительности существования связей, возникающих между макромолекулами. Наоборот, понижение температуры, как правило, способствует застудневанию, так как при этом спектр контактов между макромолекулами расширяется и сдвигается в сторону большей прочности. Следует заметить, что переход раствора в студень, равно как и студня в раствор, с изменением температуры совершается непрерывно, т. е. в этом случае не существует температур, подобных температурам кристаллизации или плавления. [c.483]

    Иногда л-комт1лексы настолько стабильны, что имеют характерные температуры плавления, налриме(р, комплексы ароматических углеводородов с пикриновой кислотой или 2, 4, 7-тринитрофлуореноном. Однако чаще молекулярные комплексы не настолько устойчивы, чтобы их можно было выделить в чистом виде. Тем не менее их образование может быть установлено по изменениям в спектрах поглощения растворов по сравнению со спектрами индивидуальных компонентов. Эти изменения могут происходить в видимой части спектра (изменение окрашивания растворов) или ультрафиолетовой (появление новых полос поглощения). [c.14]

    Если взять систему нз двух компонентов, то, откладывая по оси абсцисс состав, а по оси ординат измеренные значения исследуемого свойства (температуры плавления, электрической проводимости, магнитной проницаемости, спектров поглощения и др.), мы получим химическую диаграмму состав — свойство , которая представляет собой совокупность линий или поверхностей, положения которых определяют состояние системы, нозво-ляЕот получить данные, характеризующие состав и условия образования отдельных фаз. [c.20]

    Перед исследованием часто необходима проверка чистоты вещества и предварительное выделение этого вещества в чистом виде различными пригодными для этого способами (фракционная перегонка, перекристаллизация, сублимация, экстракция, хроматография, зонная плавка и др.). Далее, нельзя не отметить, что при известных условиях качественные испытания следует дополнять результатами количественных определений (например, элементный анализ) и измерением характеристических констант вещества (точка кипения и плавления, плотность, растворимость, оптические и кри-сталлооптические данные, спектры). Более сложные молекулы следует определенным способом разрушать и раздельно исследовать образовавшиеся продукты. [c.56]


Смотреть страницы где упоминается термин спектр плавления: [c.161]    [c.145]    [c.146]    [c.207]    [c.208]    [c.15]    [c.123]    [c.21]    [c.211]    [c.282]    [c.77]    [c.186]    [c.206]    [c.408]   
Химия этилениамина (1966) -- [ c.43 ]




ПОИСК







© 2025 chem21.info Реклама на сайте