Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы, определение

    Все изложенные соображения относятся лишь к грани кристалла определенного символа. При катодном выделении металлов, как правило, образуются поликристаллические осадки, т. е. осадки, состоящие из большого числа связанных между собой мелких кристаллов (или зерен) с гранями различных символов, что осложняет картину процесса. Одно из этих осложнений связано с тем, что грани различных символов растут с неодинаковой скоростью, и характер осадка изменяется в процессе электролиза. Для характеристики катодных осадков наряду с кристаллографической структурой используются поэтому и такие понятия, как структура роста, текстура и характер осадка. [c.343]


    Если кинетические кривые и функции распределения в каждом из этих опытов достаточно хорошо совпадают друг с другом, то предлагаемым методом определения кинетических параметров кристаллизации можно пользоваться. После каждого эксперимента из общего числа кристаллов отбирают случайным образом не менее 15 проб, которые затем фотографируются. После фотографирования определяются размеры кристаллов на этих фотографиях, доля кристаллов определенного размера, с помощью которых затем строятся функции распределения. Фотографирование можно проводить с помощью микрофотонасадки типа МФН-12, смонтированной на поляризационный микроскоп типа МИН-8. По полученным фотографиям определяют распределение кристаллов по размерам (объемам). Таким образом, в результате проведенных экспериментальных исследований становятся известны кривые изменения концентрации, равновесной концентрации, температуры раствора в ходе процесса, функции распределения кристаллов по размерам в некоторых последовательных временных точках. Так, на рис. 3.19 представлены функции распределения кристаллов щавелевой кислоты по объемам в различных временных точках. Эксперименты проводились при различных начальных концентрациях, температурах раствора при различных темпах охлаждения и чис- [c.303]

    В испарителе 4 около половины поданной воды образует небольшие кристаллы льда. Большая часть образовавшегося рассола вместе с кристаллами льда центробежным насосом подается через испаритель для увеличения количества центров кристаллизации и получения кристаллов определенного размера. Остальная часть рассола нз испарителя направляется в сепаратор 7, где кристаллы льда всплывают наверх, а рассол, пройдя через панели с отверстиями, частично подается для орошения испарителя, а частично удаляется из установки, охлаждая встречный поток воды в теплообменнике 3. Для промывки кристаллов льда от пленки рассола сепаратор 7 орошается пресной водой. В верхней части сепаратора имеется скребок 8, приводимый в движение электродвигателем. Скребок захватывает ледяную массу и направляет ее в плавитель 6. Сюда же из испарителя 4 турбокомпрессором 5 подаются пары воды, где они конденсируются при контакте с тающим льдом, образуя готовый продукт — пресную воду. Пресная вода, охладив поток соленой воды в теплообменнике 2, выводится из установки. [c.9]

    Складчатая структура содержит довольно большое количество дефектов, сконцентрированных в основном на поверхности складок (рис. 3.4, а). Поэтому можно представить монокристалл, состоящий из многослойных складчатых кристаллических областей, разделенных аморфными прослойками. Особенно большое значение имеют свободные концы цепей и проходные молекулы, входящие одновременно в несколько монокристаллов (рис. 3.4, б). Так как монокристаллы имеют многослойную структуру, то свободные концы цепей могут играть роль связующих элементов между слоями. Более того, аморфные прослойки сообщают многослойному кристаллу определенную податливость и облегчают происходящую при отжиге перестройку кристаллической структуры. [c.49]


    Ситалловые изделия обычно формуют из исходного стекла методом литья, прессования, вытягивания или термопластической технологии, после чего полученные полуфабрикаты подвергают термической обработке. При термообработке по двухступенчатому режиму на первой стадии в области более низких температур в стекле образуются центры кристаллизации, а затем при более высоких температурах происходит рост кристаллов определенных размеров. Если возможно образование нескольких кристаллических фаз, режим термообработки подбирается так, чтобы получить ситалл с необходимым соотношением фаз, с тем или иным фазовым составом. [c.203]

    При прохождении света через узкую щель происходит дифракция световых лучей, при которой они способны интерферировать, т. е. усиливать или поглощать друг друга. При этом между длиной волны излучения, углом падения лучей и постоянной дифракционной решетки существуют простые соотношения, вытекающие из волновой теории света. Именно эти закономерности и лежат в основе так называемых дифракционных методов изучения структуры кристаллов. В настоящее время применяют два основных метода получения дифракционных рентгенограмм кристаллов порошковый и метод вращения кристалла. И в том и в другом методе используют монохроматическое рентгеновское излучение. Анализ получаемых рентгенограмм не всегда прост, тем не менее удается определить не только размеры и форму элементарной ячейки, но и число частиц, входящих в ее состав. Так, ориентируя кристалл определенным образом, можно установить постоянные решетки,а следовательно, и размеры элементарной ячейки. Зная плотность кристалла, можно рассчитать массу эле- [c.91]

    Требование к исследуемому образцу. Для получения дифракционного эффекта требуется кристалл определенного размера. Последний зависит от коэффициента рассеяния и быстроты поглощения лучей в веществе поток электронов полностью поглощается при прохождении через слой в несколько микронов рентгеновские лучи дают достаточную интенсивность рассеяния при пересечении слоя в 1 мм для ощутимого рассеяния потока нейтронов нужны уже не миллиметры, а сантиметры. Поэтому для рентгеноструктурных исследований необходим монокристалл с размерами в пределах 0,1 —1,0 мм. В частности, можно использовать игольчатые (нитевидные) кристаллы очень небольшого поперечного сечения. Для нейтронографического исследования обычно требуется более массивный монокристалл — размером в 0,5—1 см (что, впрочем, существенно зависит от интенсивности первичного пучка нейтронов). Получение таких монокристаллов часто составляет самостоятельную техническую проблему. Наоборот, в электронографии можно пользоваться лишь кристаллическими пленками. Обычно они создаются путем кристаллизации вещества на аморфной, прозрач- [c.172]

    Появление и внешний вид осадко при действии групповых реактивов Изменение окраски, выделение газов, появление осадков характерной окраски, кристаллов определенной формы и т. п. при действии селективных реактивов [c.255]

    Наконец, говоря о структуре, не следует забывать о взаимном относительном расположении кристаллов. Определенная ориентация кристаллов в поликристаллическом осадке называется текстурой [5]. В упрощенной форме разницу между текстурированным и не-текстурированным металлом можно представить с помощью рис. 48. [c.130]

    При очистке углеводородов кристаллизацией кристаллы получаются исключительно для выделения второй — твердой фазы, по своему составу отличающейся от жидкой. Поэтому отпадает необходимость получения кристаллов определенных, требуемых потребителем типов. Однако, как и при процессах кристаллизации неорганических продуктов, процессы очистки углеводородов кристаллизацией, осуществляемые с применением центрифуг или фильтров, также требуют получения кристаллов, с которых остаточная жидкость легко стекает. Поэтому необходимо кратко рассмотреть общую теорию кристаллизации неорганических соединений из растворов. [c.69]

    В технологии многообразие форм кристаллов используют для получения одного и того же вещества в виде кристаллов определенной формы, обладающих различными свойствами, для чего создают соответствующие условия кристаллизации. [c.637]

    Как уже отмечалось, для получения кристаллов должно быть сдвинуто фазовое равновесие, т. е. раствор должен быть пересыщен. При этом необходимо образование мельчайших кристаллических ядер— центров, из которых затем вырастают кристаллы определенной величины. [c.640]

    Явления, связанные с действием сил поверхностного натяжения при выращивании из расплава кристалла, изучены мало. Можно назвать лишь несколько работ [29—32], где на основании приближенных решений уравнения Лапласа даются рекомендации по выбору условий вытягивания из расплава кристаллов определенной формы. [c.95]


    Решетку можно разделить на элементарные ячейки. Повторение ячейки в трех измерениях дает полное представление кристалла. Определенная решетка может быть разбита на ячейки различными способами (рис. 19.3). Если вершины углов ячеек включают все узлы решетки в кристалле, то ячейка называется примитивной (элементарной). Примитивные ячейки имеют один узел решетки, так как вершина каждого угла при узле решетки принадлежит восьми ячейкам. Решетка может [c.566]

    Для определения интенсивности образования зародышей используются опытные данные, полученные при осуществлении непрерывного процесса кристаллизации в аппарате полного перемешивания, Выше было получено соотношение (3.32) для доли от общего числа кристаллов, имеющей размеры частиц в пределах г— г + dr). В таком виде функция р(г) не содержит скорости зародышеобразования. Число зародышей, возникающих в единице объема пересыщенного раствора за единицу времени (/), может быть определено из соотношения (3.40), если для непрерывного процесса кристаллизации в аппарате полного перемешивания измерить общее количество частиц N, находящихся в аппарате, и среднечисленный объем v кристаллов. Определение общего числа частиц вследствие малости их размеров (обычно достаточно большое число кристаллов имеет размеры, близкие к размерам зародышей) оказывается затруднительным. [c.161]

    Строго говоря, рацемат-это кристалл, в котором оба энантиомера находятся в равных количествах в противоположных узлах кристаллической решетки. Это смесь или конгломерат кристаллов, состоящих из чистых энантиомеров. Отбором из рацемической смеси кристаллов определенного типа получают энантиомеры в чистом виде. Это, однако, невозможно в случае смешанных кристаллов. [c.464]

    Таким образом, исследования показали, что ЭК спектры европия могут быть использованы для установления структуры кристалла, определения структурного положения редкоземельного элемента в кристаллах, выявления неконтролируемых примесей. [c.203]

    Наблюдение картин каналирования электронов полезно для идентификации выделений в кристаллах, определения плоскостей габитуса, изучения взаимной кристаллографической ориентации выделившихся фаз и матрицы, при изучении механизма двойни-кования, дефектов кристаллической структуры и ориентации зерен. Впервые каналирование электронов было установлено при изучении монокристаллов кремния, германия и арсенида галлия. [c.210]

    Магнитострикционная генерация ультразвуковых волн. Общие свойства пьезоэлектрических кристаллов. Определение резонансной частоты кристалла [c.829]

    Пиро- и пьезоэффекты возможны лишь у кристаллов определенных точечных групп симметрии кристалла. [c.418]

    Методика проведения опытов была такова. Отбирали несколько сотен кристаллов определенной фракции и взвешивали каждый в отдельности на аналитических и микроаналитических весах. Кан дый кристалл помещали в ячейку с фиксированным номером. После заполнения всех ячеек кристаллами диск покрывали капроновой сеткой и сверху прикрывали верхним диском и скрепляли с нижним диском крепежным винтом. В таком готовом состоянии диск с кристаллами взвешивали на технических весах и помещали в эмалированный металлический сосуд емкостью 1 л. Сверху сосуд покрывали пористой резиновой прокладкой, потом прижимным диском, а затем скрепляли при помощи натяжного приспособления. Сосуд с ячейками и герметизирующим приспособлением взвешивали на технических весах и прикрепляли к диску, вращающемуся в вертикальной плоскости. Вращающийся диск с прикрепленным к нему сосудом опускали в термостатный бак термостата размером 400 X 400 X 800 мм (рис. 24). [c.81]

    При кристаллизации в начальный момент времени температура и концентрация раствора постоянны по объему аппарата и дисперсная система находится в условиях равновесия с внешней средой (т. е. температура раствора и давление паров в испарителе находятся в термодинамическом равновесии и не наблюдается испарение растворителя), пересыщение равно нулю. Введенные в аппарат затравочные кристаллы определенным образом распределены по его объему. [c.180]

    Присутствие жидких малоциклических ароматических углеводородов из-за наличия в их молекулах коротких боковых цепей не влияет на структуру и размер кристаллов парафиновых углеводородов. Повышенное их содержание приводит к увеличению размеров этих кристаллов вследствие уменьшения концентрации последних в растворе, что связано с облегчением условий роста кристаллов. Полициклические ароматические углеводороды в концентрации >25% (масс.) на смесь способствуют уменьшению размеров кристаллов парафинов, что объясняется повышением вязкости раствора, из которого проводится кристаллизация. Процесс кристаллизации твердых углеводородов из полярных и неполярных растворителей протекает в форме монокристаллических образований образуется структура, состоящая из кристаллов определенной формы, причем каждый монокристалл развивается из одного и того же центра. При такой форме кристаллизации отдельные кристаллы могут быть как разобщены между собой, так и образовывать в растворе пространственную кристаллическую решетку. С помощью электронного микроскопа при увеличении в 13 000 раз удалось проследить практически все стадии роста кристаллов от момента возникновения зародышей (центров кристаллизации) до полностью оформленного кристалла [25, 26]. Такое постадийное изучение процесса роста кристаллов проведено на примере пента-контана ( пл = 93°С) при кристаллизации в углеводородной среде (рис. 39, а—г). [c.131]

    Добавляя к кристаллу определенные примесные атомы, можно получить полупроводник, в котором электроперенос осуществляется за счет только электронов (л-тип) или только дырок (р-тип). Если к кристаллу кремния добавить атомы элементов V группы периодической системы, то можно получить проводимость -типа. Дримеси, увеличивающие число свободных электронов в полупроводнике, именуются донорными. Если в кристалл кремния ввести примесные атомы элементов П1 группы, то будет иметь место проводимость р-типа. Такие примеси называются акцепторными. [c.9]

    Требование к исследуемому образцу. Для получения дифракционного эффекта требуется кристалл определенного размера. Последний зависит от коэффициента рассеяния и быстроты поглощения лучей в веществе поток электронов полностью поглощается при про.хождении через слой в несколько микронов ренггеновские лучи дают достаточную интенсивность рассеяния при пересечении слоя в 1 мм для ощутимого рассеяния потока нейтронов нужны уже не миллиметры, а сантиметры. Поэтому для рентгеноструктурных исследований необходим монокристалл с размерами в пределах 0,1 —1,0 мм. В частности, можно использовать игольчатые (нитевидные) кристаллы очень небольшого поперечного сечения. Для нейтронографического исследования обычно требуется более массивный монокристалл — размером в 0,5—1 см (что, впрочем, существенно зависит от интенсивности первичного пучка нейтронов). Получение таких монокристаллов часто составляет самостоятельную техническую проблему. Наоборот, в электронографии можно пользоваться лишь кристаллическими пленками. Обычно они создаются путем кристаллизации вещества на аморфной, прозрачной для электронов подложке. При этом, как правило, возникает не монокристальная, а поликристалличе-ская пленка. Для структурного анализа, однако, важно, чтобы кристаллики пленки имели в ней некоторую преимущественную ориентацию. Добиться кристаллизации такой текстурированной пленки удается не всегда. [c.128]

    Морфология (фор п.г выделения). М. часто образуют кристаллы определенной формы, свойственной данному минер, виду. Облик их м. б. изометрический, удлиненный (столбчатый, игольчатый н др.) или уплощенный (таблитчатый, чешуйчатый и др ). Нередко кристаллы закономерно срастаются в виде двойников, тройников, четверников, шестерни-ков. Незакономерные сростки кристаллов и кристаллич. зерен образуют минер, агрегаты (друзы, щетки, сферо шты, оолиты и др.). Морфология кристаллов и агрегатов дает информацию об условиях образования М. и используется при их диагностике. [c.87]

    Процессов, затрагивающих синглетные состояния, а также связанных с образованием других очень активных частиц, следует использовать наносекундную импульсную спектроскопию, в которой применяется рубиновый лазер (разд. 10.6.3). Схема faкoгo прибора показана на рис. 16.20. Световой импульс от рубинового лазера с модулированной добротностью (ванадилцианин) проходит через кристалл определенного типа, например кристалл первичного кислого фосфата аммония, в результате чего частота удваивается. Около 20% излучения при 694 нм, входящего в удвоитель частоты, выходит при длине волны 347 нм. Затем свет проходит [c.284]

    Что понимают под определением кристаллической структу1ры того или иного соединения Определить кристаллическую структуру вещества — это значит найти пространственное положение каждого атома, входящего в состав соединения. Обычно для каждого атома указывают три координаты по отношению к координатной системе, оси которой совпадают с направлением ребер элементарной ячейки кристалла. Определением координат атомов и заканчивается рентгенографическое определение структуры кристалла. Эта задача довольно сложная И, к сожалению, нет универсальных рецептов для ее решения. [c.536]

    Через 1—2 час катализатор дезактивируется или его дезактивируют, добавляя 10 м/г охлажденной до —70° смеси (4 1) метанола и 28%-ного раствора аммиака, содержащего 0,5% антиоксиданта (п-окси-Ы-фенилморфолин или тимол). Смесь тщательно перемешивают, затем вынимают колбу из б ни и постепенно повышают температуру, следя за испарением пропана. Следует принять меры предосторожности — работать в вытяжном шкафу или на открытом воздухе. Метанола добавляют столько, чтобы покрыть полимерную массу, и смесь оставляют стоять на ночь для полного удаления остатка катализатора и для того, чтобы полимер пропитался антиоксидантом. Полимер дважды промывают 100 мл метанола и сушат до постоянного веса при температуре 50° в вытяжном сушильном шкафу. В зависимости от чистоты мономера, температуры и характера взаимодействия с катализатором полученный поливинилизобутиловыйэфир имеет вязкость г]уц/с в пределах 1—8 (растворы 0,10 г на 100 мл бензола при 25°) (примечания 5, 6). Выход от 80% до почти количественного. Пленки, полученные из расплава этого относительно кристаллического изотактического поливинилизобутилового эфира, не липкие, способны к холодной вытяжке, и температурный интервал плавления кристаллов, определенный по двулучепреломлению, составляет 90—120°. Кристалличность формованных пленок как в растянутом, [c.36]

    В отношении акцепторного субстрата реакции некоторые сведения могло бы дать изучение пуромицина и его аналогов. Так, известна конформация пуромицина в кристалле, определенная рентгеноструктурным анализом (рис. 104). Она подтверждается исследованиями пуромицина в растворе. Так как пуромицин — хороший акцепторный субстрат в реакции транспептидации, знание его структуры может навести на некоторые суждения о стереохимии аминоацильного и аденозинЬвого остатков в пептидилтрансферазном центре. Далее, известно, что аналог с более фиксированной конформацией, типа изображенного на рис. 105, тоже может служить в качестве акцепторного субстрата в реакции транспептидации, и даже более активен, чем пуромицин. Здесь фиксирована ориентация пуринового кольца относительно рибозы (так называемая анти -ориентация), и это позволяет думать, что именно она [c.191]

    Сажа из моноксида jj-лерода. Интерес, проявляемый к этому препарату, вызван тем, что сажа используется для выращивания кристаллов графита среднего размера, которые лишь незначительно слипаются в более крупные агрегаты. Для получения препарата над тонкодисперсным чистым железом (например, нз карбонилов железа) пропускают СО при 400—700 °С. В зависимости от температуры получают кристаллы определенного размера 5 нм (400 °С), 10 нм (500 °С), 20 нм (700 °С). Следует иметь в виду, что соединения железа, загрязняюш,ие препараты, удается удалить дополнительной очисткой (см. разд. Чистый аморфный углерод ). [c.670]

    Поскольку эксперименты, связанные с исследованиями химического состава, структуры, физических и химических свойств синтетических цеолитов, неизбежно проводятся на образцах кристаллических порошков, особую важность приобретает вопрос об однородности состава цеолитов. Химич ескии анализ образца — это усредненньиг анализ относительно большого образца, содержа-ш,его много небольших кристаллов. Один грамм содержит около кристаллов. Состав кристаллического цеолита обычно отличается от состава исходной смеси. Вполне вероятно, что из высоко-концентрированных смесей, пересыщенных по отношению к различным компонентам, могут образовываться кристаллы, несколько различающиеся по химическому составу, особенно если в самом цеолите возможны определенные колебания в составе, как это наблюдается для цеолитов У, О и др. Химический состав порошкообразных образцов может изменяться от кристалла к кристаллу, а возможно, даже в пределах отдельных кристаллов. Данные химического анализа всего образца отражают средний химический состав составляющих его кристаллов. Определенное физическое свойство цеолита, связанное с его составом, может и не обнару-Нлить какой-лпбо разрыв непрерывности, поскольку измеряемая величина является усредненной. [c.398]

    Для комплексного катиона [Au(NH3)4] + piT + + pAg + + p 4 30 [674]. Комплексные аммиакаты кобальта взаимодействуют с Au li, образуя характерные кристаллы определенной формы и цвета [515]. [c.33]

    Известна зависимость между температурой процесса и габитусом кристаллов, который изменяется в пределах непрерывного геометрического ряда куб —октаэдр с увеличением этого параметра. В реальных условиях, когда в реакционном объеме существуют термоградиенты, в опыте одновременно образуются кристаллы различного габитуса, и указанная закономерность имеет безусловно статистический характер, т. е. выражается в преимущественном образовании кристаллов определенного га-битусного типа. Поэтому надежность приводимых ниже результатов обеспечивалась статистическим усреднением информации, полученной от достаточно большого числа (порядка 3000) кристаллов. [c.371]

    Главной практической трудностью при создании установки для выращивания кристаллов по этому методу является запаразичивание прибора, особенно соединительных трубок в нем. Поэтому реальные установки, как правило, отличаются от схемы, данной на рис. 3-16. В них предусматривают, например, независимый подогрев соединительных трубок. В некоторых вариантах приборов камеру роста располагают над камерой растворения. Создают также трехкамерные установки, в которых одна из камер, промежуточная между камерой роста и растворения, предназначена для перегрева раствора и его дезактивации. Варианты таких приборов описаны, например, Г. Бакли [1954] и К.-Т. Вильке [1977]. Возможные усложненные схемы приборов даны также в предыдущем издании настоящей книги. В одной из этих схем предусматривалась не только дезактивация раствора, но и его регенерация, т. е. очистка от накапливающихся примесей. Таким образом, реальные приборы для выращивания кристаллов по описываемому методу относительно сложны. Достаточно совершенный кристаллизатор для выращивания кристаллов по этому методу — простой, компактный, удобный в сборке и разборке, — видимо, еще не создан. Этот метод, вообще говоря, предпочтителен при промышленном выращивании кристаллов или в специализированных кристаллизационных лабораториях со сравнительно большой программой выращивания кристаллов определенного вещества. Метод используется для веществ, имеющих существенную зависимость растворимости от температуры при любом знаке этой зависимости. [c.115]

    Как правило, кристаллы правильной огранки растут только при отсутствии температурных или концентрационны с градиентов вдоль поверхности кристалла. Форма последнего может сильно изменяться в зависимости от внешних условий. Кристаллы определенного вещества, полученные при различных условиях, могут резко отличаться друг от друга по форме. В одних условиях образуются кристаллы удлиненной формы (иглы), а при других условиях пластинчатой или хлопьсзидкой формы. [c.44]


Библиография для Кристаллы, определение: [c.158]   
Смотреть страницы где упоминается термин Кристаллы, определение: [c.90]    [c.69]    [c.69]    [c.415]    [c.640]    [c.217]    [c.124]    [c.217]    [c.32]   
Химия коллоидных и аморфных веществ (1948) -- [ c.278 ]




ПОИСК







© 2025 chem21.info Реклама на сайте