Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Донорно-акцепторные отношения

    Продукционный процесс — сумма всех одновременно протекающих в растении физиологических, биохимических, биофизических и других процессов образования и метаболизма веществ, обеспечивающих формирование хозяйственно-ценных органов растения и продуктов вторичного обмена на основе генетического контроля и донорно-акцепторных отношений. [c.465]


    Зависимость между интенсивностью фотосинтеза, величиной ассимилирующей поверхности, оттоком ассимилятов, рядом других факторов, с одной стороны, и урожаем — с другой, рассматривается в настоящее время в аспекте теории фотосинтетической продуктивности и донорно-акцепторных отношений [457—462] 4 [c.181]

    Какова роль донорно-акцепторных отношений между органами растений в обмене и транспорте органических веществ  [c.401]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отношение числа ионизированных молекул к общему числу растворенных. Степень ионизации в основном определяется электроно-донорными и электроно-акцеп-торными свойствами растворенного вещества и растворителя. Для многих соединений наиболее сильно ионизирующими растворителями являются вода, жидкие аммиак и фторид водорода. Эти соединения состоят из дипольных молекул и склонны к донорно-акцепторному взаимодействию и образованию водородной связи. Например, НС1 хорошо ионизируется в воде, что связано с превращением водородной связи НаО- -H l в донорно-акцепторную [НгО—Н] +  [c.161]

    Руководствуясь справочными данными, охарактеризуйте термодинамическую стабильность этих веществ. По методу валентных связей предскажите геометрическое строение и полярность молекул. Обоснуйте реакционную активность (или пассивность) указанных веществ по отношению их к распространенным растворителям и реактивам (вода, сильные кислоты и щелочи, типичные окислители и восстановители), донорно-акцепторные свойства и склонность молекул к димеризации. Укажите возможные методы получения данных веществ в промышленности и в лаборатории. [c.155]

    Наряду с обычными а-связями между атомами 8 и О возникают еще и нелокализованные л-связи, которые образуются по донорно-акцепторному механизму за счет свободных З -орби-талей атомов кремния и неподеленных 2р-электронных пар атомов кислорода. Подобная структура полимерного диоксида 8 02 обусловливает ряд свойств кварца, резко отличных от свойств диоксида углерода СОг. Кварц обладает большой твердостью, высокой температурой плавления (1728 С) и кипения (2950 °С), а также химической стойкостью по отношению ко многим реагентам. [c.274]

    Учитывая, что в результате образования семиполярной связи (которую иногда называют донорно-акцепторной) происходит перераспределение. .. плотности между соединяющимися атомами, такую связь изображают (см. справа) либо стрелкой, идущей от донора к. .., либо с помощью знаков ф и , характеризующих заряд составных частей молекулы по отношению к исходному .  [c.232]


    Когда два одинаковых атома дают молекулу путем перекрывания орбиталей, связь называют просто ковалентной. Если атомы неодинаковы, и в связевой области имеется сдвиг зарядовой плотности в сторону ядра, более сильно притягивающего электроны, говорят о полярной ковалентной связи, а также о донорно-акцепторной, поскольку один атом является донором, а другой соответственно акцептором в отношении некой определенной доли электронного заряда. [c.50]

    По-видимому, лучше строго отличать термины, относящиеся к поведению атомов, от терминов, прилагаемых к связям. Термины донор и акцептор , применяемые к атомам, ясны можно условиться и в некоторых случаях (например, РР5 или 5Рй) употреблять термин донор-акцептор тогда, когда один и тот же атом действует двояким образом. В отношении связей лучше пользоваться терминами ковалентная, полярная, ионная, донорно-акцепторная (кратная ст —я). [c.50]

    Пиридин, как и другие азины, окисляется надкислотами с образованием М-оксида. Эту реакцию, имеющую чрезвычайно важное синтетическое значение, можно формально представить как донорно-акцепторное взаимодействие атомарного кислорода, который предоставляет надкислота, с неподеленной электронной парой гетероатома. В препаративном отношении реакцию удобно проводить не с самой надкислотой, а с пероксидом водорода в уксусной кислоте [160]. В этом случае надкислота получается непосредственно в реакционной смеси. Возможно применение и других надкислот см. монографию [161]). [c.54]

    В соответствии с наличием или отсутствием дипольного момента и величиной диэлектрич. проницаемости 8 различают Р. полярные и неполярные. Кроме того, молекулы Р. могут выступать в качестве доноров (акцепторов) протонов или электронов. Различают четыре группы Р. 1) протонные (вода, спирты, карбоновые к-ты и др.), к-рые являются хорошими донорами протонов и обладают высокой диэлектрич. проницаемостью (е > 15) 2) апротонные диполярные (нек-рые апротонные амиды, кетоны, сульфоксиды и др.), обладающие высокой диэлектрич. проницаемостью, но не обладающие донорно-акцепторными св-вами 3) электронодонорные (напр., эфиры) 4) неполярные (сероуглерод, углеводороды), к-рые обладают низкой диэлектрич. проницаемостью (е < 15) и не обладают донорно-акцепторными св-вами ни по отношению к водороду, ни по отношению к электрону. [c.184]

    Комплексы с макроциклическими лигандами. Эта группа комплексов составляет обширный и наиболее своеобразный класс комплексных соединений с органическими лигандами. Эти органические макро-циклические лиганды подразделяются на ароматические (порфирины, фталоцианины) и неароматические. Ароматические лиганды имеют плоскую структуру и обладают высокой жесткостью скелета молекулы по отношению к конформационным превращениям. По существу они имеют только одну плоскую конформацию. Эти комплексы обладают предельно высокой устойчивостью к распаду на составные части (ион металла и лиганд) в растворе. Из большого числа факторов, определяющих их высокую стабильность, главное место занимает макроциклический эффект. Этот эффект обусловлен не столько упрочением донорно-акцепторной химической связи металл—макроцикл, сколько пространственным экранированием реакционного центра МК4, в результате которого предельно сильно ограничивается доступ к нему реагента (сольватированный протон НзО , Н (8)), вызывающего распад комплекса, например  [c.163]

    Донорно-акцепторная связь — это связь между молекулами или группами, способными отдавать или принимать пару электронов. Донорные свойства растворителей характеризуются донорным числом. Они зависят от акцепторных свойств партнера по взаимодействию, в том числе химических звеньев полимера. В табл. ЗП3.4 приведены донорные числа ряда растворителей, определенные по отношению к ЗЬС ,. [c.823]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]


    Окислительно-восстановительные свойства кажцой сопряженной пары не абсолютны, а зависят от другой пары, участвующей в окислительно-восстановительной реакции. Прецвицсть напра -ление окислительно-восстановительной реакции можно только на основе количественной характеристики донорно-акцепторных по отношению к электрону свойств, участвующих в реакции окислительно-восстановительных пар. Такой характеристикой является величина окислительно-восстановительного потенциала пары. Окислительно-восстановительный потенциал является мерой цо-норно-акцепторных свойств пары по отношению к электрону и описывается уравнением Нернста. Для обратимой полуреакции [c.125]

    При классификации по донорно-акцепторным свойствам обычно выделяют протонные и апротонные растворители. П р отон-ные растворители обладают донорно-акнепторными свойствами по отношению к протону, т. е. могут отдавать или принимать протон и таким образом участвовать в процессе кислотно-основного взаимодействия. Апротонные растворители не проявляют кислотно-основных свойств и не вступают в протолитическое равновесие с растворенным веществом. Эта классификация в известной степени остается условной, так как большое значение имеет природа растворенного вещества. Например, обычно считающийся апротонным бензол в растворе амида натрия в аммиаке проявляет кислотные свойства. Однако для очень многих аналитически важных систем классификация вполне оправдывается. [c.34]

    Особо селективные жидкие фазы по отношению к некоторым соединениям. Растворы нитрата серебра в полиэтиленгликоле, полипропилен-гликоле и бензилцианиде. Бензилцианид не гигроскопичен и не требует применения сухого газа-носителя, В этом его преимущество по сравнению с гликолями. Максимальная рабочая температура колонкн 40° С. Ион серебра в AgNOs способен как акцептор электронов проявлять донорно-акцепторное взаимодействие с олефинами, ароматическими соединениями и селективно удерживать их в колонке, Наблюдается хорошее разделение цис- и транс-олефинов. Парафины не задерживаются этим адсорбентом и быстро проходят через колонку. [c.283]

    В противоположность простым солям комплексные соединения элементов семейства платиноидов чрезвычайно распространены. Эти элементы являются наилучшими комплексообразователями в периодической системе. В этом отношении они превосходят элементы триады железа за счет большего удаления от ядра валентных орбиталей, что облегчает донорно-акцепторное взаимодействие с лигандами и увеличивает энергию расщепления в кристаллическом поле лигандов. Поэтому большинство комплексов платиноидов (в отличие от элементов триады железа) относится к низкоспиновым. Для платиноидов характерны ацидокомплексы с лигандами — анионами слабых кислот СЫ , С 8 ,СНаС00 и др., а также гало- [c.423]

    В общем случае многие основания и кислоты в неводных средах могут сильно изменить степень диссоциации. Например, слабая в водном растворе сернистая кислота Н280а в жидком аммиаке диссоциирована примерно в такой же степени, как HNOз в водном растворе, т.е. является сильной кислотой. Таким образом, характер диссоциации гидроксидов (по кислотному или основному типу), а также степень диссоциации зависит от природы растворителя, в частности от его донорно-акцепторной активности по отношению к протону. Так, в ряду [c.283]

    Растворители для Р.э-как правило, полярные жидкости (чистые шш смешанные). Чем больше диэлектрич. проницаемость е р-рителя, тем значительнее ослабляется сильное электростатич. притяжение противоположно заряженных ионов, что способствует возшгеновеншо в р-ре ионов. Интенсивное взаимод. последних с молекулами р-рителя приводит к связыванию нонов с. молекулами р-рнтеля (см. Сольватация). Важна также способность молекул р-рителя выступать в качестве доноров нлш акцепторов протонов или электронов. В зависимости от этих двух св-в различают четыре группы р-рителей 1) протонные р-рнтели (вода, спирты, карбоновые к-ты и др.), к-рые являются хорошими донорами протона и обладают высокой диэлектрич. проницаемостью (е > 15) 2) апротонные диполярные р-рители (иек-рые апротонные амиды, кетоны, сульфоксиды и др.), обладающие высокой диэлектрич. проницаемостью, но не обладающие донорно-акцепторными св-вами в отношении протона  [c.190]

    Из ур-ния следует, что более летучий компонент обладает и большей р-римостью. Отношение р-римостей компонентов характеризует селективность извлечения. Во мн. случаях для ее повышения в сверхкритич. газ вводят малые добавки полярных в-в - модификаторов (напр., ацетон, метанол, этанол, трибутилфосфат). Последние способны образовывать донорно-акцепторные комплексы с нек-рыми в-вами, [c.421]

    Координационные числа в ряду ионов Zn +, Сс12+, Hg + возрастают вследствие увеличения размеров катионов комплексообразователен В случае ионов кадмия и ртути возможна координация в экваториальной плоскости пяти и даже шести донорных атомов Если учесть аксиальные лиганды, то координационное число оказывается равным 7 (пентагональная бипирамида) пли 8 (гексагональная бипирамида). Сродство к донорному атому серы особенно высоко у ионов ртчти (И) Ионы типа 1 (я + 1) 5 по отношению возможности образования ковалентных донорно-акцепторных связей занимают промежуточное положение между ионами подгрупп 1 1 и 1 2 Они не имеют вакантных 5-орбиталей и перенос электронной плотности с донорных атомов возможен только на вакантные /о-орбитали, расположенные по энергии довольно высоко Поэтому ионы Т1+ могут быть использованы при замещении в макроциклах ионов щелочных металлов, а ионы РЬ- в некоторых отношениях напоминают ионы щелочноземельных металлов Вследствие больших размеров этих ионов их координационные числа могут быть достаточно высокими [c.18]

    Растворимость препаратов лигнина, как и других полимеров, определяется строением и молекулярной массой, а также природой растворителя, главным образом, полярностью. Препараты лигнина могут растворяться в некоторых органических растворителях (диметилсульфоксид, диметилформамид, диоксан и др.), тогда как в других они не растворяются или растворяются частично. Известно, что растворимость вещества зависит от соотношения его полярности и полярности растворителя. Растворимость при этом будет максимальной, когда определенные свойства (способность к образованию Н-связей, химическое строение и т.п.) растворителя и растворяемого вещества близки. Наиболее часто растворяющую способность по отношению к полярным полимерам определяют по энергии когезии и способности к образованию водородных связей. Влияние энергии когезии оценивают по параметру растворимости (см. 7.1). Для лигнина этот показатель оценивается значением порядка 22500 (Дж/м ) . Шурх установил, что растворители с параметром растворимости, сильно отличающимся от этого значения, не растворяют препараты лигнина, а у растворителей с близкими значениями параметра растворимости растворяющая способность возрастает с увеличением способности к образованию водородных связей. Чем сильнее разница как в параметрах растворимости, так и в способности к образованию Н-связей, тем в большей степени должен быть деструктурирован лигнин для перехода в раствор. Полярность растворителя удобно характеризовать диэлектрической проницаемостью, связанной с параметром растворимости эмпирическим уравнением линейного типа. Существуют также попытки связать растворимость лигнина с параметрами, учитывающими донорно-акцепторные взаимодействия в системе полимер-растворитель. [c.412]

    Триалкил- и триарилпроизводные Р, Аз и 8Ь являются хорошими донорами электронов по отношению к ионам /-металлов. Имея вакантные (и - 1) /-орбитали, они кроме донорно-акцепторных а-связей образуют еще обратные дативные я-связи с заполненными d -, d a-, dy - орбиталями металлов. [c.591]

    На диаграммах состояния бинарных систем ускорителей, проявляющих по отношению друг к другу донорно-акцепторные свойства, наряду с эвтектической точкой появляется перитектическая точка, что подтверждает образование в смеси молекулярного комплекса [305]. Это свидетельствует о том, что в смеси кристаллических веществ перенос заряда от молекулы-донора к молекуле-акцептору облегчается при эвтектическом плавлении. Следовательно, образованию тг- и п-компле сов предшествует возрастание химической активности компонентов в эвтектических смесях. Небольшой гипсо-хромный сдвиг, характерный для уФ-спектров разбавленных растворов таких бинарных систем, указывает на преимущественное образование в них п-комплексов [298]. При этом несвязанная п-электронная пара перемещается от донора на разрыхляющую орбиталь акцептора. Разрыхляющая орбиталь может принадлежать всей молекуле, а п-электроны — атому азота, серы или кислорода. [c.108]

    Во всех этих случаях ни одна из взаимодействующих частиц не имеет неспаренных электронов. В данных примерах донорами являются молекулы N118 и Н2О, а акцепторами - ионы и Ве . Донорно-акцепторные связи в итоге ничем не отличаются от обычных ковалентных связей все четыре связи N—Н в тетраэдрическом ионе аммония и три О—Н связи в ионе оксония НдО эквивалентны друг другу во всех отношениях - по длине, полярности и прочности. Последний пример - с тетраэдрическим ионом 62 [c.62]

    СИЛЫ. Правильный выбор элюирующей силы подвижной фазы является необходимым, но не всегда достаточным условием успешного разделения. Для целенаправленного выбора или изменения состава подвижной фазы необходимо ввести рациональную классификацию растворителей по их селективности, подобно тому, как это было сделано в отношении элюирующей силы. Основой всех способов классификации селективности является различная способность растворителей вступать в межмолекулярные взаимодействия различных типов, представление интегрального параметра элюирующей силы в виде суммы парциальных величин, характеризующих донорные, акцепторные, диполь-дипольные и другие свойства. Отослав заинтересованного читателя к первоисточникам [81—84], остановимся лишь на изображении свойств растворителей в виде треугольника селективности [85]. Вершинам его (рис. 111.32) отвечают гипотетические растворители, способные к межмолекулярным взаимодействиям только одного типа. Окружности в его пределах изображают области, соответствующие реально существующим раствор1 телям группы Б, подразделенным на восемь подгрупп селективности I — алифатические простые эфиры, амины II — алифатические [c.298]

    Самые распространенные соединения переходных металлов содержат только один ион металла или иногда нейтральный атом, окруженный несколькими группами, называемыми лигандами, по отношению к которым металлы обладают свойствами лыоисовых кислот (т. е. акцепторов электронов). В качестве лигандов могут выступать отдельные атомы нли одноатомные (простые) ионы, но ими могут быть также многоатомные (комплексные) ионы илн молекулы, Единственным требованием, предъявляемым к лигандам, является наличие у них неподелен-ных пар электронов, которые они могут обобществлять с металлом. Связь такого тнпа, когда оба электрона, образующие связывающую электронную пару, поставляются только одной частицей, принято называть координационной ковалентной связью (иначе донорно-акцепторной или дативной связью). Обсуждаемые комплексы часто называют координационными комплексами. Число лигандов, окружающих металл в комплексе, называется координационным числом металла. [c.313]

    Ионы типа 1 (п 4- I) 5 по отношению возможности образования ковалентных донорно-акцепторных связей занимают промежуточное положение между ионами подгрупп 1,1 и 1.2. Они не имеют вакантных 5-орбиталей и перенос электронной плотности с донорных атомов возможен только на вакантные р-орбитали, расположенные по энергии довольно высоко. Поэтому ионы Т1+ могут быть использованы при замещении в макроцнклах ионов щелочных металлов, а ионы РЬ 2 в некоторых отношениях напоминают ионы щелочноземельных металлов. Вследствие больших размеров этих ионов их координационные числа могут быть достаточно высокими. [c.18]

    Наблюдаемое явление может быть истолковано, исходя из представлений о различии свойств свободных и связанных гидроксильных грунц 161. Молекулы двуокиси и четырехокиси азота имеют в своем составе я -связи, а также неподеленные электронные пары у атомов кислорода. Такие молекулы способны вступать в донорно-акцепторное взаимодействие с частично протонизированным водородом свободных гидроксильных групп поверхности. В то же время близко расположенные друг к другу связанные гидроксильные группы взаимно возмущены водородной связью и поэтому являются в энергетическом отношении менее активными адсорбционными центрами. Излом кривых на рисунке примерно соответствует температурной области, в которой с поверхности удалены практически все связанные гидроксилы, а свободные гидроксильные группы еще почти не затронуты. Аналогичные явления наблюдались также в [7]. [c.202]

    Вообще роль влаги (воды) в углях не ограничивается физической пропиткой ОМУ. Вода, как полярное соединение, может участвовать в донорно-акцепторных взаимодействиях. Это особенно характерно для углей ранних ступеней метаморфизма. Именно этим объясняется то, что бурые угли, как правило, содержат много воды. В работе [52] сопоставлена влагоемкость бурых углей с содержанием в них карбоксильных и гидроксидных групп и показано, что данные коррелируют наилучшим образом при отношениях Н20 Н00С = 2 1 и Н20 0Н=1 1. Это указывает на участие воды в донорно-акцепторных взаимодействиях за счет образования водородных связей, например  [c.107]

    В противоположность простым солям комплексные соединения элементов семейства платиноидов чрезвычайно распространены. Эти элементы являются наилучшими комплексообразователями в Периодической системе. В этом отношении они превосходят элементы триады железа за счет большего удаления от ядра валентных орбиталей, что облегчает донорно-акцепторное взаимодействие с лигандами и увеличивает энергию расщепления в кристаллическом поле лигандов. Поэтому большинство комплексов платиноидов (в отличие от элементов триады железа) относится к низкоспиновым. Для платиноидов характерны ацидокомплексы с лигандами — анионами слабых кислот N, NS, СН3СОО и др., а также галогенидные комплексы. Широко распространены катионные комплексы с нейтральными лигандами, особенно аква- и аь минокомплексы. Комплексные соединения этих элементов в нулевой степени окисления — карбонилы — также хорошо известны, хотя и не имеют такого значения, как у элементов триады железа. [c.499]


Смотреть страницы где упоминается термин Донорно-акцепторные отношения: [c.374]    [c.456]    [c.116]    [c.274]    [c.89]    [c.347]    [c.147]    [c.203]    [c.207]    [c.394]    [c.313]    [c.314]    [c.145]    [c.81]    [c.588]    [c.478]    [c.166]   
Регуляция цветения высших растений (1988) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Акцепторная РНК

донорные



© 2025 chem21.info Реклама на сайте