Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изобутан крекинг

    Правда, для н-гептана чистая реакция изомеризации протекает в очень малой степени в первую очередь наблюдается крекинг с образованием продуктов меньшего молекулярного веса [2]. При изомеризации н-пентана получают уже значительно лучшие выходы, тогда как н-бутан может быть переведен в изобутан практически без потерь при крекинге. [c.513]

    Чисто термическим путем, т. е. только нагревая парафиновые углеводороды до высокой температуры, нельзя их изомеризовать. Шульце и Веллер [8] крекировали н-бутан и изобутан при 700° и 0,32 сек. времени пребывания газов в нагретой зоне, получив около 20% продуктов разложения. В продуктах крекинга н-бутана нельзя было обнаружить ни изобутана, ни изобутилена, и, наоборот, в газах крекинга изобутана н-бутан или н-бутен отсутствовал. Отсюда следует, что для изомеризации необходимо присутствие катализатора. [c.514]


    Алкилирование всегда сопровождается процессами полимеризации, которые подавляются по мере увеличения избытка изопарафина. Изобутан — самый важный компонент парафинового алкилирования — содержится в природных газах и в газах нефтеочистки в гораздо меньшем количестве, чем бутан. Поэтому фракции бутана часто изомеризуют в изобутан в присутствии хлористого алюминия. Кроме того, можно алкилирование объединить с полимеризацией, так как вследствие распада олефинов изобутан оказывается уже сконцентрированным. Фракция С4 может быть очень насыщена изобутаном также в результате каталитического крекинга [14]. [c.255]

    Объемная скорость подачи ББФ каталитического крекинга Соотношение метанол изобутан Кратность циркуляции метанола к изобутену [c.152]

    Изобутан, как показано различными исследователями [21, 39, 73], оказывает некоторое ингибитирующее действие на реакцию крекинга при изомеризации м-пептана. Однако эффективность его совершенно несравнима с эффективностью циклических углеводородов и поэтому, чтобы достаточно полно подавить побочные реакции, необходимо применять изобутан в конпентрациях, превосходящих концентрации пентана. [c.25]

    Гринсфельдер, Воге и Гуд [37] при изучении каталитического крекинга отметили, что ири этом образуется относительно большое количество Сд- и С -углеводородов. Они рассматривали этот факт как некоторое подтверждение теории механизма образования ионов карбония при данном процессе. При крекинге парафинов от октана до гептадекана самыми легкими продуктами оказались изобутан и бутан [38], а при промышленном крекинге газойлей при помощи хлористого алюминия с целью получения бензина по данным многих исследователей газ состоит преимущественно из бутана (по-видимому, главным образом изобутана). [c.96]

    В то время как сейчас изобутан имеется в газах каталитического крекинга, во время войны необходимо было пополнять его запасы изомеризацией //-бутана над хлористым алюминием. Большим преимуществом каталитического крекинга перед термическим является тот факт, что первый вызывает реакции изомеризации, в которых менее желательные углеводороды [c.115]

    При параллельном питании реакторов изобутаном сырьем установки служила смесь бута -бутиленовых фракций термического и каталитического крекинга с соотношением изобутан олефины 1,2 1. Поступающее на установку сырье смешивали с рециркулирующим изобутаном в соотношении изобутан олефины 3 1, затем смесь равными порциями подавали в реакторы. [c.155]

    Газ, полученный при каталитическом крекинге, богат пропиленом, изобутаном и может быть использован для производства высокооктановых компонентов авиационного бензина, а также в качестве сырья для химической промышленности. [c.7]


    При использовании в качестве исходного сырья для выделения бутадиена газов крекинга н-бутилен-сырец содержит значительные количества изобутана и изобутилена, которые отгоняются вместе с бутиленом-1 [258]. Из этой смеси изобутилен удаляется путем поглощения 65 /о серной кислотой на холоду с последующей полимеризацией при нагревании. Оставшиеся же изобутан и бутилен-1 разделяются путем экстрактивной ректификации. [c.292]

    Влияние состава сырья на распределение кокса по грануле катализатора крекинга подробно изучено в работе [42]. Алюмосиликатный катализатор при 500 °С обрабатывали стиролом, бутадиеном, изобутаном, а-метилстиролом и н-гексадеканом. Подсчитано, что если бы кокс заполнил весь свободный объем пор этого катализатора, его количество составило бы 68% массы самого катализатора. Это значение характеризует теоретическую предельную величину заполнения пор Оказалось, что фактическая предельная величина заполнения С , при которой почти полностью прекращалось дальнейшее коксообразование для разных углеводородов, изменяется в очень широких пределах-от 10 до 50%. На практике ни в одном случае не было достигнуто значение С . Во всех экспериментах измеряемая доступная поверхность в процессе закоксовывания сокращалась до минимума (не более 2 м /г), что o- [c.11]

    На действующих заводах исходным сырьем являются метанол и изобутан. Метанол подвергается окислительной конверсии в формальдегид на типовых установках с катализатором—серебро на пемзе (см. гл. 6), входящих в состав основного производства. Полученный формальдегид после отгонки непрореагировавшего метанола направляется на синтез ДМД. Изобутан дегидрируется в псевдоожиженном слое пылевидного катализатора (см. дегидрирование бутана и изопентана). С4-фракция дегидрирования изобутана, содержащая до 45—50% изобутилена, также подается на синтез. Существенно отметить, что для получения ДМД могут использоваться любые технические С4-фракции, содержащие достаточное количество изобутилена (продукты каталитического крекинга, пиролиза, дегидратации изобутиловых спиртов и т. д.). Обычно сопутствующие изобутилену непредельные углеводороды С4 нормального строения, так же как пропилен и олефины С5, значительно уступают изобутилену, обладающему активным третичным атомом углерода, по реакционной способности во взаимодействии с формальдегидом (табл. 11.3). [c.368]

    Если изомеризация может быть включена в состав любого НПЗ, то алкилирование входит в состав только тех заводов, на которых имеются установки каталитического крекинга, вырабатывающие непредельные углеводороды Сз—С4. Сырьем установок алкилирования обычно является бутаН-бутиленовая фракция, которая содержит и бутены и изобутан, причем в необходимом для реализации процесса соотношении. С целью расширения ресурсов сырья и увеличения выхода алкилата рекомендуется привлекать на эти установки пропан-пропиленовую фракцию (ППФ). Однако для алкилирования ППФ необходим получаемый со стороны изобутан. [c.59]

    Однако каталитическое алкилирование изобутана начало благоприятно развиваться лишь вследствие широкого внедрения на нефтеперерабатывающих заводах установок каталитического крекинга. Газ каталитического крекинга, богатый изобутаном, обеспечил установки алкилирования одним из компонентов сырья, тогда как для получения олефинов приходилось использовать и газы термических процессов. В настоящее время трудно представить себе завод, на котором установкам каталитического крекинга не сопутствовали бы установки каталитического алкилирования. Процесс каталитического алкилирования не потерял своего значения в нефтеперерабатывающей промышленности до настоящего времени. [c.331]

    Однако все перечисленные исследования носили пока характер интересных разрозненных поисков ни масштаб, ни кинетические закономерности инициирования не были изучены. Более подробное исследование было проведено по инициированию реакций крекинга углеводородов при помощи ди-метилртути 128, 129]. На основании данных этих исследований была произведена оценка энергий активации реакций взаимодействия СНз-радикалов с алканами при условии, что энергия активации реакции рекомбинации СНз-радикалов принимается равной нулю (8,3 5,5 4,2 5,6 и 3 ккал для взаимодействия СНз-радикалов с Этаном, бутаном, изобутаном, толуолом и пропиленом соответственно). В последующем были получены более высокие значения для энергий активации реакций взаимодействия СНз-радикалов с алканами д алкенами [130, 131]. Экспериментально найденные значе-/ния энергий активации реакции " замещения СНз-радикалов [c.64]

    Изобутан (355°, время крекинга 10 мин) [c.69]

    Результаты хроматографического анализа продуктов крекинга (табл. 23 и 24) показывают, что при 20 мм (548°) вначале изобутан распадается быстрее (за первую минуту), чем бутан. С увеличением времени крекинга, влияние продуктов сглаживает это различие в скорости разложения. При более высокой температуре (573°) наблюдается обратное — изобутан при значительном времени крекинга распадается медленнее, чем бутан. Крекинг бутана на метан и пропилен в этих, условиях более чем в пять раз, а на этан и этилен более чем в два раза превосходит дегидрогенизацию. В тех же условиях дегидрогенизация изобутана в 7 раз, а деметанизация его в три раза превосходят деэтанизацию. [c.99]


    В качестве сырья процессов алкилирования используются изобутан и непредельные углеводороды Сз и С4. Эти углеводороды получают на нефтеперерабатывающих заводах главным образом в процессах гидрокрекинга, каталитического и термического крекинга. Отсутствие достаточных ресурсов непредельных углеводородов Сз и С4 не позволяет производить алкилат в необходимых количествах. Кроме того, процесс изомеризации легких бензиновых фракций может обладать лучшими экономическими показателями, чем процесс алкилирования [20]. Однако развитие процесса изомеризации лимитируется ресурсами легких бензиновых фракций. Поэтому с помощью изомеризующего гидрокрекинга прямогонных бензиновых фракций можно восполнить количество высокооктановых изопарафиновых углеводородов, недостающее для приготовления автомобильных топлив типа АИ-93 и АИ-98 на основе бензинов каталитического риформинга. [c.150]

    Удельное значение протекающих одновременно реакций крекинга а дегидрирования зависит в первую очередь от числа атомов С в исходном материале. В то время как этан при высоком нагреве превращается практик чески только в этилен и водород и, следовательно, здесь в основном идет реакция термического дегидрирования, при нагреве пропана уже большее значение имеет реакция крекинга с образованием этилена и метана. При нагреве бутана до высокой температуры образуется совсем немного бутена. Бутан расщепляется главным образом на этилен и этан или, соответственно на пронен и метан. Изобутан, напротив, примерно на 50% превращается в изобутен. [c.47]

    Б11Т1шн-б] тпиленовая фракция. Фракция С4, получаемая при крекинге прямогонных соляровых дистиллятов над синтетическими алюмосиликатными катализаторами, богаг изобутаном (40—55%) и бутиленами (35—45%). Содержание в ней нормального бутана невелико (10—15%). При крекинге тех же дистиллятов над естественными катализаторами образующаяся фракция С4 содержит меньше изобутана и больше нормального бутана (см. табл. 28 на стр. 201). [c.233]

    Развитие процессов нефтехимического синтеза связано с широким использованием природных промышленных газов. Предельные углеводороды — метан, этан, нронан, бутан, изобутан, пентан применяют в качестве топлива, а также сырья для получения непредельных углеводородов (путем крекинга и пиролиза). Непредельные углеводороды в свою очередь являются сырьем для получения синтетических материалов. В промышленных масштабах перерабатываются газы этилен, пропилен, бутилены, дивинил, изонрен, ацетилен. [c.233]

    Товарные алкилаты, получаемые большей частью путем низкотемпературного каталитического алкилирования бутенов изобутаном, являются целиком парафиновыми углеводородами. В противоположность бензинам прямой гонки и крекинг-бензинам парафиновые углеводороды алкилатов сильно разветвлены и представлены, главным образом, триметилпента-нами. Как показывает табл. I, состав их зависит от катализатора, примененного для алкилирования (Глазго и др. [3]). [c.48]

    В настоящее время процессы изомеризации пентанов и гексанов получили особенное значение в связи с общемировой тенденцией отказа от применения тетраэтилсвинца при приготовлении автомобильных бензинов Изомеризацией н-бутана получают изобутан, применяемый в процессе алкилирования. Необходимость в изобутане возрастает в связи с применением зысокоакгивных цеолитсодержащих катализаторов в процессе каталитического крекинга и соответственным уменьшение.м количества получаемого изобутилена в комбинированных схемах получения алки-латов, изопрена и метил-грет-бутилового эфира процесс изомеризации н-бутана используется в качестве головного, с последующим дегидрированием изобутака в изобутилен. Селективное вовлечение во вторичные процессы изобутилена исключает дорогостоящую и энергоемкую стадию ректификации., [c.3]

    Кроме реакции деструктивного алкнлирования имеется еще один источник получения аномальных углеводородов — крекинг олефинов С12 и выше. После ние образуются в заметных количествах в первые час работы установки, когда кислота свежая и концентраци в ней изобутана невелика, а также при использовани сырья с низким соотношением изобутан олефин или пр колебаниях режима, благоприятсгвующих реакции полр меризации олефинов. [c.24]

    На SIO2—AI2O3 получаются почти только одни насыщенные углеводороды С4— g и кокс, что указывает на глубокие процессы переноса водорода и крекинга при 60—200° С главными десорбированными продуктами являются изобутан, изопентан и 2-метилпентан [203]. [c.104]

    По данным [57], лимитирующей стадией является скелетная изомеризация бутенов. Согласно приведенным выше данным, паллади-рованная окись алюминия является одним из наиболее активных катализаторов скелетной изомеризации олефинов. В связи с этим авторы определили скорости скелетной изомеризации н-бутана и бутена-1. Для изомеризации н-бутана при 570 °С скорость оказалась равной 0,2 моль/ч на 1 см катализатора. Поскольку скорость изомеризации бутена-1 при 570 °С экспериментально не может быть определена (из-за термической изомеризации и сильного крекинга бутена-1), были рассчитаны скорости скелетной изомеризации бутена-1 при 450 и 500 °С и кажущаяся энергия активации (67 кДж/моль). Принимая, что в интервале 500—570 °С энергия активации остается прежней, была найдена скорость скелетной изомеризации бутена-1 при 570°С, которая составила 0,177 моль/ч на 1 см катализатора. Следовательно, можно считать, что скорости изомеризации н-бутана в изобутан и бутена-1 в изобутен являются величинами одного порядка. [c.169]

    При изомеризации бутена-1 в присутствии 1 % Р(1 на СаУ было отмечено, что в интервале 300—350 С основными продуктами превращения являг ются н- и изобутан. При повышении температуры резко растет содержание продуктов крекинга, в основном этан-этиленовой фракции. Отношение изобутана к н-бутану в два раза превышает равновесное. Содержание кокса в этих опытах достигало 7%. Следовательно, можно предположить, что изобутен может быть первичным продуктом превращения бутена-1 на цео-литном катализаторе и при отсутствии водорода в системе. В литературе имеются данные, согласно которым кокс , отлагающийся на цеолитных катализаторах, сравнительно богат водородом. Вероятно, этот кокс способствует превращению бутена-1 в изобутан. Для подтверждения этого вывода авторы изучили поведение бутена-1 в присутствии носителей (СаУ и СаХ) в интервале 250—450 °С. Найдено, что основными продуктами превращения бутена-1 также являются н- и изобутан. Отношение изобутана к н-бутану превышает равновесное содержание кокса на этих катализаторах 5—6% начальные скорости образования изобутана иг н-бутана в присутствии палладированного СаУ и из бутена-1 I присутствии чистого СаУ равны соответственно 25-10 и 2Ы0 моль/ч на 1 см катализатора. Таким образом, превращение бутено в изобутан может протекать не только на металле, но и на самоу носителе. Исходя из изложенных данных, Т)бщую схему изомериза ции н-бутана в присутствии окиснометаллических катализатороЕ на основе цеолитов можно представить следующим образом  [c.170]

    Установлено, что катализатор мало влияет на скорость реакции крекинга низших углеводородов метанового ряда. Так, пропан Л1[шь очень слабо изменяется при ООО С бутан и изобутан при 550 С подвергаются крекингу на 4% к-пентан нри 500 С почти не изменяется. В одинаковой степени эти углеводороды слабо подвергаются реакциям дегидрогенизации и изоморизацни. [c.438]

    Бутан-бутиленовая фракция каталитического крекинга (1 и 11 ступени). Бутан-бутиленовая фракция термического крекинга Сырье, поступающее на алкилирзваиие без циркулирующего изобутана Сырье с циркулирующим изобутаном [c.173]

    Сырье и продукция. Изобутан можно алкилировать пропиленом, бутиленами, амиленами и даже более высококипящими олефинами. В типичном случае для алкилирования используют оле-фииовые фракции, образующиеся на установках каталитического крекинга. Ниже охарактеризованы качество сырья, а также выход и качество алкилата  [c.172]

    В промышленности алкилированию чаще всего подвергают изобутан и значительно реже изопентан. Из олефинов наибольшее применение как алкилирующие агенты нашли н-бутилены (смесь 1- и 2-изомеров), которые с изобутаном дают алкилат, богатый углеводородами Са и часто называемый просто изооктаном. Нередко в качестве сырья берут бутан-бутиленовую фракцию крекинг-газов, содержащую все необходимые реагенты и очищеннук> от бутадиена. [c.264]

    Исходным сырьем для производства МЭК служит бутан-бутиленовая фракция термического или каталитического крекинга или продукт однсстадийного дегидрирования н-бутана. Кроме н-бутиленов эти виды сырья содержат инертные примеси — н-бутан и изобутан, а также активные компоненты — изобутилен и, в меньших количествах, дивинил. [c.203]

    В ходе опытов с продуктами первой стадии, где в качестве алкилирующего агента применяли изобутилен, важное значение имело взаимодействие высокомолекулярных олефинов с изобутаном. По-видимому, начальным актом всего процесса является протонирование тяжелых олефинов с образованием тяжелых изо-.алкильных карбкатионов. Эти карбкатионы в значительной мере подвергаются крекингу и дают главным образом карбкатионы и олефины С4—Сд. Очевидно, эти олефнны, в свою очередь, быстро Т1ротонируются, образуя новые карбкатионы. В результате переноса гидрид-ионов от молекулы изобутана или от углеводородов, растворенных в кислоте, получаются изопарафины С4—Сд. Очевидно, что тяжелая фракция и полимеры образуются в определенной мере в ходе второй стадии, но большая часть этих соединений появляется, по-видимому, на первой. [c.110]

    Образование тяжелой фракции и углеводородов, растворимых в кислоте. Тяжелая фракция (>Сд) образуется главным образом за счет превращения олефинов, в основном олигомеризации. Олефины хорошо растворяются в кислотной фазе, а изобутан — нет. Чтобы избежать образования больших количеств тяжелой фракции, необходимы высокое соотношение изобутана и олефинов и ин-генсивное -перемешивание [3]. Объемистые изоалкильные катионы, получающиеся в ходе олигомеризации, подвергаются крекингу с образованием изопарафинов Сд и Сю (обнаруженных в тяжелой фракции в значительных количествах). Думается, однако, что существенная часть тяжелой фракции образуется в результате реакций, протекающих в кислотной фазе, в отличие от реакций идущих на поверхности раздела кислота/углеводород, где протекает большинство реакций алкилирования, или вблизи нее. Это заключение основано на результатах, полученных при двухстадийном алкилировании [6]. [c.129]

    Олефины и изобутан, использованные в настоящей работе, были получены с нефтеперерабатывающего завода в г. Батон-Руж (штат Луизиана), принадлежащего фирме Еххоп. В качестве олефинов использовали бутан-бутиленовую фракцию каталитического крекинга, а изобутановым сырьем служил дистиллят деизобутанизатора с установки газофракционирования. Состав олефинов и изобутанового сырья таков [в % (об.)]  [c.182]

    Примеси диенов. В олефиновом сырье в небольших количествах могут также содержаться диены. Их концентрация растет с ужесточением условий крекинга (например, при коксовании в псевдоожиженном слое) нефтяного сырья при получении олефинов. Так" же, кат -н-этлен, диены не проявляют склонности к реакции с изобутаном в присутствии сильной серной кислоты. Диены реагируют с кислотой и дают продукты, больщинство из которых растворимо в ней. I Если эта предпосылка верна, то расчетное количество диенов, которое вызовет снижение концентрации серной кислоты с 98,5 до 90%, составит 0,145 м на 1 т кислоты. По данным промышленных установок сернокислотного алкилирования, количество диенов, понижающих концентрацию кислоты в указанных пределах, составляет 0,111—0,247 м на 1 т кислоты.  [c.216]

    В топливно-нефтехимических схемах помимо процессов каталитического риформинга, гидрокрекинга, каталитического крекинга и алкилирования изобутана должна еще предусматриваться гидроизомеризация легких бензинов. Продукты гидроизомеризацни необходимы для частичной з амены алкилатов. В этом случае непредельные углеводороды и изобутан могут быть использованы в процессах синтеза каучука и других высокомолекулярных соединениях. В схемах перспективных НПЗ, по-видимому, будет неуклонно повышаться попутная выработка олефинового и изопарафинового сырья, необходимого для синтезов различных продуктов широкого народного потребления. Вместе с тем в дальнейшем, очевидно, будет возрастать относительный выпуск реак тивных топлив и арктических изомеризованных моторных топлив, в производстве которых роль процессов гидрокрекинга и гидроизомеризации неуклонно увеличивается, Повышение удельного значения установок гидрокрекинга позволит одновременно вырабатывать изомеризованные низкозастывающие топлива и базовые масла. [c.348]

    Смесь газообразного парафинового углеводорода с кислородом и НВг, обычно в отношении 2 2 1, реагирует в паровой фазе при 180—200° в течение примерно 3 минут. Присутствие НВг уменьшает тенденцию к горению и крекингу углеродного скелета. Этан в этих условиях дает уксусную кислоту, пропанацетон ц некоторое количество пропионовой кислоты, н-бутан дает метилэтилкетон, диацетил и изобутан соответственно — гидроперекись третичного бутила и третичный бутиловый спирт. Выход кислородсодержащих продуктов — 50—80% на прореагировавший углеводород. После образования кетонов НВг немедленно удаляют из газов поглощением щелочью или олефинами. [c.465]

    Продукты гидрокрекинга. Продукты гидрокрекинга во многом сходны с продуктами каталитического крекинга. Они содержат небольшое количество метана и этана фракция С4 богата изобутаном, в жидких продуктах много разнетвленных углеводородов. [c.308]

    В отличие от каталитического крекинга продукты гидрокрекинга имеют насыщенный характер. Ф )акция Сз—С4 представлена пропаном и изобутаном. Бензин также практически не содержит алкенов. Газойли гидрокрекинга, кроме того, менее ароматизированы, чем газойли каталитического ьрекннга. При гидрокрекинге происходит одновременно очистка н( фтяных фракций от серы и других гетероатомов. Таким образом, гидрокрекинг как бы сочетает в себе каталитический крекинг, 1 идрированпе и гидроочистку. [c.308]

    На НПЗ применяется серная кислота концентрацией 96—98% (при алкилировании изобутанй бутиленами) и 84—92% (при очистке крекинг-дистиллятов и смазочных масел). Для получения бесцветных масел (медицинских, парфюмерных), очистки жидких парафинов, производства сульфонатных присадок и удаления ароматических углеводородов из бензинов-растворителей применяется олеум. [c.239]


Смотреть страницы где упоминается термин Изобутан крекинг: [c.107]    [c.143]    [c.138]    [c.81]    [c.434]    [c.169]    [c.67]    [c.68]    [c.64]    [c.69]   
Переработка нефти (1947) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Изобутан



© 2025 chem21.info Реклама на сайте