Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства водных растворов метанол

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    Полученный в промышленности метанол-сырец содержит два основных компонента метанол и воду. Свойства водно-мета-нольных растворов значительно отличаются от свойств чистого метанола. Поэтому представляет интерес рассмотреть свойства системы метанол — вода. [c.131]

    При обработке о-(+)-глюкозы метанолом и H l образующийся метил-о-глюкозид содержит лишь одну метильную группу, хотя свойства его напоминают свойства полного ацеталя. Он спонтанно не превращается в альд гид и спирт при соприкосновении с водой для гидролиза требуется водный раствор кислоты. [c.950]

    СВОЙСТВА ВОДНЫХ РАСТВОРОВ МЕТАНОЛА [c.131]

    Фазовые равновесия в системах, образованных формальдегидом и спиртами Сз—Сд различного строения, было изучено в работах [304, 309] в связи с исследованием возможности применения не смешивающихся с водой спиртов для экстракции (хемосорбции) формальдегида из водных растворов. По свойствам эти системы мало отличаются от растворов формальдегида в метаноле. Формальдегид ведет себя как малолетучее вещество, менее летучее, например, чем бутанол, хотя и несколько более летучее, чем бензиловый спирт. В предположении, что в спиртах и выше единственной формой взаимодействия компонентов является гемиформаль (это предположение подтверждается ре- [c.153]

    Метаналь, формальдегид (СНгО), представляет собой едкий, токсичный, бесцветный газ, обладающий дезинфицирующими свойствами растворяется в воде. 40%-ный водный раствор формальдегида, называемый формалином, используется, например, для консервации биологических препаратов. Формальдегид получают каталитическим окислением или дегидрированием метанола (оба процесса протекают одновременно)  [c.267]

    В трех пробирках находятся три водных раствора метанола, муравьиной кислоты, формальдегида. Опишите, как, основываясь на различии в химических и физических свойствах, можно определить, где какой раствор находится. Приведите уравнения реакций. [c.360]

    Амины, полученные восстановлением продуктов нитрования без предварительного отделения нейтрального масла, могут быть легко от него освобождены это достигается обработкой аминов рассчитанным количеотвом соляаой или серной кислоты и извлечением полученных солей аминов разбавленным метанолом при встряхивании. Избыток минеральной кислоты вызывает выделение солей аминов из водных растворов в виде масел. Эти масла растворимы в углеводородах и эмульгируют их при прибавлении воды. Соли аминов с органическими кислотами также растворимы в воде при избытке кислоты. Высокомолекулярные амины могут быть превращены в алкилированные аминокислоты действием хлоркарбоновых кислот. Особенно просто получают алкиламиноуксусные кислоты. В виде натриевых солей при подходящей длине алкильной группы они обладают прекрасными моющими свойствами  [c.346]


    Изменение свойств водных растворов метанола (температуры кипения, давления насыщенных паров, коэффициента теплопровод- [c.16]

    М. В то же время аналогичное уменьшение молярной доли воды достигается уже в 6% водном растворе метанола, причем изучение влияния состава растворителя можно распространить на любые соотношения воды и метанола. Влияние природы растворителя и его состава на свойства ионных растворов более полно обсуждается в главе VH. [c.139]

    Несмотря на большие преимущества применения газообразного формальдегида все же до настоящего времени он применяется главным образом в виде водных растворов различной концентрации, содержащих и не содержащих метанол. Состав и свойства водных растворов (как свежеприготовленных, так и хранящихся длительное время в разные периоды года при различных температурах) имеют большое значение для выбора оптимальных режимов хранения и переработки формальдегида. В этой главе приводятся справочные данные. [c.83]

    Влияние растворителя. Изменение состава растворителя, введение в раствор неэлектролитов обычно сильнее влияют на химические равновесия в растворе, чем увеличение концентрации растворенного электролита. Влияние солей из-за их ограниченной растворимости редко, изучается при концентрациях больших, чем 2 Af. В то же время аналогичное уменьшение молярной доли воды достигается уже в 6% водном растворе метанола, причем изучение влияния состава растворителя можно распространить на любые соотношения воды и метанола. Влияние природы растворителя и его состава на свойства ионных растворов более полно обсуждается в главе VII. [c.139]

    Если химический состав сшитой смолы известен, то структурные свойства обычных гель-нолимерных матриц могут быть изучены путем определения влагоемкости и содержания экстрагируемых веществ. Эти испытания проводятся на гидратированных образцах смолы. Сухую смолу нужно медленно гидратировать либо в камере с постоянной влажностью, либо выдерживанием смолы в метаноле с последующей обработкой водными растворами метанола, причем содержание воды следует увеличивать до тех пор, пока смола не гидратируется полностью. Удаление последних следов метанола достигается непродолжительным промыванием смолы водой. [c.146]

    Ионообменное, разделение обычно выполняют при применении водных растворов солей, которым придаются буферные свойства. Иногда добавляют в подвижную фазу небольшое количество смешивающихся с водой органических растворителей - метанола, этанола, ацетонитрила, тетрагидрофурана. Сила и селективность растворителя зависят от типа и концентрации буферных ионов и других солей, от значения pH и от вида и концентрации добавленных органических растворителей. [c.36]

    В электрохимическом анализе под смешанными растворителями понимают растворы органических растворителей в воде. Иногда такие растворители называют водно-органическими. При составлении смешанного растворителя следует руководствоваться правилом свойства органического растворителя по возможности должны быть близки к свойствам воды. Используют следующие растворители метанол, этанол, пропанол, диоксан, этиленгликоль и др. Однако применение смешанных растворителей сопряжено с рядом неудобств. Прежде всего встает вопрос, какой электрод сравнения можно использовать для измерений, поскольку присутствие органического растворителя приводит к появлению потенциала жидкостного соединения. Это означает, что возникает дополнительная разность потенциалов между индикаторным электродом и электродом сравнения по сравнению с разностью потенциалов, измеренной в водной среде. Далее, шкала pH для буферных систем в смешанных растворителях не совпадает со шкалой pH, относящейся к чисто водным растворам. Для каждого растворителя необходима своя калибровка стеклянного электрода. [c.99]

    К, так же как и в водных растворах метанола, имеют экстремальный характер. Однако максимальные значения растворимости газов смещаются в область меньших концентраций спиртов в последовательности этанол— изопронанол—н-пронанол, что связано с усилением эффекта гидрофобной гидратации с увеличением эффективных размеров молекул спиртов в этом ряду. Подобное смещение экстремумов на диаграммах состав—свойство в водных растворах одноатомных спиртов отмечается и в других работах [10-12,17]. [c.39]

    Свойства. Белый не гигроскопичный порошок хорошо растворяется без видимых признаков взаимодействия в воде и метаноле не растворяется в бензоле. Водные растворы имеют сильно кислую реакцию. Содержание препарата определяют иодометрическим титрованием. [c.616]

    В безводных спиртовых растворах, как и в ацетатных, титан не пассивируется. Для его пассивации в обоих типах растворов необходимо присутствие воды или других соединений, содержащих кислород с достаточно отрицательным эффективным зарядом. Например, ацетон замедляет скорость коррозии титана в метаноловых растворах хлороводорода, хотя и менее эффективно, чем вода [86]. Механизм коррозии во всех исследованных растворах электрохимический. Для H l-спиртовых растворов наблюдается закономерное уменьшение скорости коррозии с увеличением молекулярной массы спирта [1079]. Ионы и молекулы галоидов служат активаторами коррозии титана, непосредственно участвуя в процессе. Так, при коррозии титана в растворах брома в метаноле катодным процессом является ионизация брома, анодным — растворение титана [495]. Вода необходима для пассивации титана только в анодном процессе, способность титана к катодной пассивации не зависит от наличия воды [495, 603, 86]. Титан —металл с механической пассивностью, в водных растворах он само-пассивируется. Это его свойство сохраняется и в водно-спиртовых [c.115]


    Выпускают также стабилизированный водный раствор, содержащий (в среднем) 40% едкого натра и 12% Н. б. (уд. вес 1,4). Этот реагент не меняет свои свойства при длительном хранении и может быть использован в продажном виде или после разбавления водой, метанолом или этиловым спиртом для восстановления карбонильных соединений. Большинство альдегидов восстанавливаются настолько быстро, что реакция конденсации под действием щелочи не мешает восстановлению. Для восстановления а, -непредельных альдегидов этот сильно основной реактив не пригоден и его следует разбавить до желаемой концентрации и нейтрализовать двуокисью углерода. После нейтрализации реагент следует немедленно использовать, поскольку Н. б. не стабилен и при 25° разлагается на 4,5/6 за [c.381]

    Совмещение ПВС и его сополимеров с пластификаторами осуществляется в смесителях, экструдерах и на вальцах при повышенных температурах, иногда пластификаторы добавляют в водный раствор ПВС. Наиболее удобно смешивать пластификатор с полимером непосредственно в процессе производства ПВС (см. рис. 5.1). При добавлении пластификатора к набухшему в метаноле ПВС на стадии его сушки (удаления растворителя) создаются наиболе благоприятные условия для равномерного распределения пластификатора в частицах полимера. Совмещение операций сушки ПВС и пропитывания частиц полимера пластификатором позволяет без применения специального смесительного оборудования получать однородную смесь, способную храниться длительное время без изменения свойств. [c.117]

    СВОЙСТВА МЕТАНОЛА И ЕГО ВОДНЫХ РАСТВОРОВ СВОЙСТВА МЕТАНОЛА [c.125]

    Область малых концентраций. Водные растворы неэлектролитов представляют обширный класс жидкостей, структура и свойства которых изучаются различными методами. При исследовании рассеяния рентгеновского излучения смесями метилового спирта с водой И. В. Радченко и Ф. К. Шестаковским обнаружено, что присутствие в воде молекул метанола укрепляет ее структуру, вызывая образование более прочных молекулярных ассоциаций, чем в чистой воде. М. Ф. Букс, и А. В. Шурупова, изучая рассеяние света растворами спиртов в воде, обнаружили узкий максимум интенсивности в области малых концентраций спирта. Проведенный ими теоретический анализ концентрационного рассеяния света показывает, что наблюдаемый максимум интенсивности при малых концентрациях спирта не связан с флуктуациями концентрации. Теоретическая кривая светорассеяния проходит через экспериментальные точки во всей области концентраций выше 0,1 мольных долей спирта. При концентрации (0,05 0,7)т на экспериментальной кривой выделяется узкий максимум, которого нет на теоретической кривой. Можно предположить, что этот максимум интенсивности светорассеяния при малых концентрациях спирта обусловлен флуктуациями структуры раствора, связанными со стабилизацией структуры воды. [c.298]

    Если необходимо получить масло вязкостью при 99° 21,8 сст, температуру при полимеризации поддерживают 127— 138°. Небольшие количества катализаторного комплекса в масле нейтрализуют метанолом и известью. Масло подвергают перегонке с водяным паром, а катализаторный осадок разрушают добавлением водного раствора хлористого алюминия. Выделившееся масло имеет сильно насыщенный характер. Это сырое масло обрабатывают 6% хлористого алюминия в течение 3 час. нри температуре 120—150°, выделяют из смеси, нейтрализуют и после отгонки легких фракций используют в производстве цилиндрового масла. Этот процесс в том виде, в каком он осуществлен в Лейна, дает возможность получать компонент масла (74% на этилен), цилиндровое мас.по (8%) легкий масляный дистиллят (7%) используется для приготовления катализаторной смеси с хлористым алюминием. Свойства этих продуктов приведены в табл. 17. Для получения авиационных масел высоковязкий синтетический компонент масла смешивают с равными количествами очищенных избирательными растворителями минеральных масел. [c.375]

    Метанол с водой смешивается во всех соотношениях хорошо поглощает пары воды из газовой Фазы. Эти свойства метанола, а также возможность регенерахуш отработанного раствора сравнительно простым способом, даже в случаях его загрязнения механическими примесями и минеральными солями, сыграли решающую роль в широком применении водных растворов метанола в качестве антигидратного ингибитора. [c.3]

    Окисление йодной кислотой—Ш04-2Н20 (получение ее см. ) ведут в водных растворах или в растворах метанола, диоксана или уксусной кислоты. По сравнению с тетраацетатом свинца йодная кислота отличается ярко выраженной избирательностью. Так же, как и тетраацетат свинца, йодная кислота обладает свойством разрывать углерод-углеродные связи в а-гликолях эта реакция проходит в более мягких условиях. В случае многоатомных спиртов (например, глицерина, маннита) под действием йодной кислоты разрываются все С—С связи первичные спиртовые группы окисляются в формальдегид, а вторичные—в муравьиную [c.664]

    Сравнение свойств пимарицина и теннецетина показало, что они идентичны (Divekar е. а., 1961). Пимарицин представляет собой бесцветные кристаллы, разлагающиеся примерно при 200° (Struyk е. а., 1958). УФ-спектр характеризуется максимумами при 290, 303 и 318 нм (E i7m соответственно 710, 1100, 1020) в метаноле, [а]в +180° (с 0,5 в диметилсуль-фоксиде). Антибиотик растворяется в метилпирролидоне (12%), диметилформамиде (5%), формамиде (2%), в пропилен- и диэтиленгликоле, трудно — в воде (0,01%) и метаноле (0,2%), не растворяется в высших спиртах, эфирах, углеводородах, кетонах, диоксане и циклогексаноле. В кристаллическом состоянии пимарицин весьма устойчив. Его водные растворы разрушаются под действием света. При добавлении антиоксидантов (например, аскорбиновой кислоты) устойчивость растворов повышается. [c.18]

    Изложены теоретические основы и технология синтеза метанола из оксида углерода и водорода, а также процессы ректификации метаио-ла-сырца описаны схемы производства и аппаратура. Приведены особенности получения исходного газа, физико-хигмические свойства метанола и его водных растворов, способы получения высоко- н низкотемпературных катализаторов, пути повышения качества продуктов и использование отходов производства, даны технико-экономические показатели. [c.2]


Смотреть страницы где упоминается термин Свойства водных растворов метанол: [c.184]    [c.112]    [c.220]    [c.149]    [c.169]    [c.260]    [c.134]    [c.16]    [c.465]    [c.480]    [c.1766]    [c.393]    [c.322]    [c.16]    [c.451]   
Технология синтетического метанола (1984) -- [ c.125 , c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Метанол растворы

Метанол свойства

Растворов свойства

Свойства водных растворов ПАВ



© 2024 chem21.info Реклама на сайте