Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексны донорно-акцепторные

    К важному типу комплексов относятся циклические соединения, иначе хелатные, или клешневидные они образуются в результате координации ионом металла лигандов с координационной емкостью два и выше. Такие лиганды называются полидентатными. Поли-дентатные лиганды в отличие от монодентатных ( КНз и т. п.) имеют два и более донорных атома и могут занимать два и более координационных мест у центрального иона. Подобно клешням рака, лиганды захватывают комплексообразователь (стрелкой обозначена донорно-акцепторная связь), образуя прочные комплексные соединения, как, например, с этилендиамином  [c.237]


    СЕМИПОЛЯРНАЯ СВЯЗЬ (координационная, донорно-акцепторная связь) — тип химической связи, образование которой можно представить как присоединение к свободной электронной паре атома (донора) другого атома или группы атомов (акцептора), имеющего секстет валентных электронов. С. с. встречается чаш,е всего в комплексных и органических соединениях. Типичным примером С. с. в органических соединениях является связь N—О [c.222]

    Образование химических связей по донорно-акцепторному механизму характерно для комплексных соединений, изучение которых выходит за рамки программы средней школы, [c.81]

    Б этом состоянии атом бора может, следовательно, быть акцептором электронной пары. Действительно, BF3 соединяется по донорно-акцепторному способу с водой, аммиаком и другими веществами известен также комплексный анион BF4. Во всех подобных соединениях ковалентность и координационное число бора равны четырем, а атом бора находится в состоянии гибридизации sp и образует тетраэдрические структуры. [c.631]

    Метод валентных связей в приложении к комплексным соединениям базируется на тех же представлениях, что и в обычных соединениях. При этом принимается во внимание, что химические связи, возникающие при комплексообразовании имеют донорно-акцепторное происхождение, т. е. образуются за счет неподеленной электронной пары одного из взаимодействующих атомов и [c.359]

    По методу валентных связей предполагается, что между лигандами и комплексообразователем образуется донорно-акцепторная связь. за счет пар электронов, поставляемых лигандами. С помощью этого метода было объяснено строение и многие свойства (в том числе и магнитные) большого числа комплексных соединений. Этот метод является очень приближенным он мало пригоден для расчета энергии связи и других характеристик комплексных соединений. [c.121]

    Координационно-комплексный катализ осуществляется в тех случаях, когда кислоты и основания Льюиса, выступающие в роли катализаторов, образуют с одним из реагентов донорно-акцепторный комплекс, зачастую довольно стабильный. В ходе реакции и субстрат, и реагент оказываются включенными в координационную сс ру катализатора, исходное состояние которого восстанавливается после образования конечного продукта. [c.243]

    Важное значение донорно-акцепторная связь имеет при рассмотрении образования координационных (комплексных) соединений (см. 9.3). Ее часто называют поэтому координационной. [c.106]

    Неподеленная пара электронов молекулы аммиака обусловливает ее донорные свойства и склонность к образованию комплексных частиц с осуществлением при этом функции лиганда, С другой стороны, ион Н+ и ионы металлов, особенно d-элементов, могут быть акцепторами неподеленной пары, в результате чего возникают ковалентные связи по донорно-акцепторному механизму. Образование солей аммония при взаимодействии аммиака с кислотами может быть представлено следующей схемой  [c.180]


    К числу важных лигандов относится молекула Н О, которая за счет одной из двух неподеленных пар электронов атома кислорода может вступать в донорно-акцепторное взаимодействие с ионами металлов. Поэтому обычно ионы металлов в водных растворах существуют как комплексные ионы. Так гидратированные ионы Си или Ре + можно записать как [Си(НаО)в] или [Ре(Н20)в] . [c.77]

    Донорно-акцепторные связи могут образовываться между молекулами, в которых все атомы валентно насыщены и которые не содержат неспаренных электронов. Такие связи широко распространены в комплексных соединениях, кристаллогидратах солей и и др. Так, NHз, соединяясь с ВРз, образует ЫНз ВРз благодаря наличию свободных орбит в атоме бора и неподеленных электронных пар в атоме азота. Прочность таких связей может достигать прочности обычных ковалентных связей. При этом часто играет роль то, что из двух нейтральных частиц при образовании между ними донорно-акцепторной связи одна (донор) становится [c.69]

    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]

    Образование комплексных соединений с донорно-акцепторной связью характерно также для элементов третьей группы периодической системы — бора и алюминия, имеюш,их одну незаполненную р-орбиту. Широко известны в химии, например, комплексные соединения фтористого бора и хлористого аммония. Одним из простейших соединений этого типа является гидрат фтористого бора  [c.34]

    Из этого примера видно, что ион водорода присоединяется к уже готовой электронной паре, принадлежащей до реакции только одному из соединяющихся элементов — азоту. Следовательно, химическая связь, осуществляемая за счет неподеленной пары электронов одного атома и свободной квантовой ячейки другого, называ-е 1ся координативной, или донорно-акцепторной. Атом или ион, предоста1Вляющий неподеленную электронную пару, называется донором, а присоединяющийся к этой электронной паре — акцептором. В ионе аммония МН4]+ донором является атом азота, а акцептором — ион водорода. Ион, образованный за счет координативной связи, называется комплексным ионом, а соединения, содержащие подобные ионы, — комплексными соединениями. [c.81]

    Комплексный ион (Вр4] имеет тетраэдрическое строение, которое характерно н для других соединений бора, имеющих донорно-акцепторные а-св.язи. В этих соединениях формируются 4 ковалентные а-связи, образующиеся из 5р -гибридных орбиталей атома бора. [c.328]

    Согласно теории валентных связей к комплексным соединениям относятся соединения с так называемыми донорно-акцепторными и дативными связями. Донорно-акцепторной связью называется парная связь, делокализованная в одной плоскости, когда оба электрона для ее образования поставляются лигандом (донором), а металл выступает в качестве акцептора этой электронной пары, участвуя в связи своими пустыми атомными орбиталями. [c.44]

    В молекуле аммиака атом азота находится в состо.янии sp -гибридизации, причем на одной из его гибридных орбиталей находится неподеленная электронная пара. Поэтому при донорно-акцепторном взаимодействии молекулы NH3 с ионом Н+ образуется ион NHJ, имеющий тетраэдрическую конфигурацию. Аналогично построен комплексный ион здесь донором электронной пары служит анион F , а акцептором — атом бора в молекуле BF3, обладающий незанятой орбиталью внешнего электронного слоя и переходящий при комплексообразовании в состояние sp -гибридизации. [c.360]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]


    В диамагнитном комплексном ионе [Со(СЫ)б] осуществляется иная схема образования вакантных гибридных орбиталей, участвующих в образовании шести донорно-акцепторных ст-связей Со + с ионами СЫ  [c.89]

    Атомы переходных элементов могут выступать одновременно в роли доноров и акцепторов электронных пар. Они имеют вакантные 5-и р-орбитали, а неподеленные электронные пары находятся на (1-уровнях. Отсюда возникает необходимость различать виды донорно-акцепторных связей. Донорно-акцепторную связь, которая образуется за счет неподеленных пар -электронов, принято называть дативной. С такого типа связями мы встретимся ири рассмотрении комплексных соединений. [c.194]

    Множество неорганических химических соединений отличается весьма сложным строением. В этих соединениях помимо обычных ковалентных или ионных связей между атомами или частицами действуют ковалентные химические связи, образованные по донорно-акцепторному механизму. Такие сложные соединения называются комплексными соединениями. [c.244]

    V Сопоставление теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как теории валентных связей, так и теории кристаллического поля. Шести сг = -орбиталям октаэдрического комплекса в рамках теории валентных связей отвечают шесть а-связей, возникающих за счет донорно-акцепторного взаимодействия psp -гибридных орбиталей комплексообразователь и электронных пар шести лигандов (рис. 215). Что же касается молекулярных л - и [c.513]

    Следует отметить, что в ряде случаев взаимодействие ионов с сольватной оболочкой не ограничивается прямыми электростатическими взаимодействиями ион-диполь. Сольватация может происходить и за счет специфических донорно-акцепторных взаимодействий ионов с молекулами растворителя. Во многих случаях сольватированный ион можно рассматривать как комплексный ион с молекулами растворителя во внутренней сфере. [c.110]

    Что касается, молекул, подобных СН , то они не имеют ни неподеленных пар, ни вакантных АО валентной оболочки и поэтому к образованию комплексных соединений за счет донорно-акцепторной связи неспособны. Теория донорно-акцепторной связи — этого важного вида химического взаимодействия — получила большое развитие в методе валентных связей [к-16]. [c.184]

    В приведенных выше примерах образования циклических группировок механизм образования связей центрального иона с обоими атомами бидентатного лиганда один и тот же. Так, при образовании комплексного оксалата к положительно заряженному центральному иону металла присоединяются ионы Сг04 , а в этилен-диаминовом комплексе связь образуется по донорно-акцепторному механизму — за счет донорных свойств атомов азота. [c.94]

    Следует указать, что за счет донорно-акцепторного взаимодействия фактическое число связей атома, а потому и его валентность не только в комплексных, но и простых соединениях может быть больше не только числа его неспаренных электронов, но и числа связанных с ним соседних атомов. [c.55]

    Рассматривая строение простых ацетиленидов Сп , AgI и Аи , мы видим, что на тройную связь в этих соединениях оказывают влияние два типа связей — комплексная (донорно-акцепторная и дативная связи) и металлоорганическая а- и йз1—ря-сшш). Используя данные по ИК-спектрам ацетиленидов и этинильных комплексов ряда металлов (табл. 6), можно ориентировочно рассмотреть вопрос о связи между акцепторными и донорными свойствами металлов и эффектом воздействия их на тройную связь в этих соединениях (эффект изменения тс=с)-Значения А о=с (Av == =v s н—V =oм) падают в ряду Си > Ап > Ag. Акцепторные свойства указанных ионов, характеризуемые, в первом приближении, значениями сродства к электрону, электроотрицательности или стандартного окислительного потенциала, падают в ряду Au >Ag > u . В этом же ряду резко растет устойчивость ацетиленидов по отношению к реакции [c.87]

    В методе валентных связей предполагается, что между лигандами и комплексообразователем образуется донорно-акцепторная связь (см. стр. 177) за счет пар электронов, поставляемых лигандами. С сюмощью этого метода было объяснено строение и многие свойства (в том числе и магнитные) большого числа комплексных соеднненип. [c.217]

    У элементов подгруппы цинка две первые энергии ионизации-выше, чем у -элементов соответствующих периодов. Это объясняется проникновением внешних -электронов под экран (п—1) 1 -электронов. Уменьшение энергии ионизации при переходе от Zn к Сс1 обусловлено большим значением главного квантового числа п, дальнейшее же увеличение энергии ионизации у Hg обусловлено проникновением бх -электронов не только под экран 5й -электро-нов, но и под экран 4/ -электронов. Значения третьих энергий ионизации довольно высокие, что свидетельствует об устойчивости электронной конфигурации (п—В соответствии с этим у элементов подгруппы цинка высшая степень окисления равна +2. Вместе с тем (п—1) 1 -электроны цинка и его аналогов, как и у других -элементов, способны к участию в донорно-акцепторном взаимодействии. При этом в ряду Zn — d —Hg " по мере увеличения размеров (п—l) -opбитaлeй электроно-донорная способность ионов возрастает. Ионы Э ( ) проявляют ярко выраженную тенденцию к образованию комплексных соединений. [c.631]

    Донорно-акцепторные связи играют важнейшую роль при обра зованип комплексных соединений. Так, комплексные ионы пере ходных металлов [Ре(СЫ5)в ", (КЧ(ЫНз)б , [Си(Н20)4Р " обра зуются большей частью путем использования неподеленных элек тронных пар атомов, содержаш,ихся в лигандах ( N5), ЫНз, Н2О м свободных орбит ( -подуровня центрального иона (Ре , N1 + Сы "). [c.70]

    Образование комплексов. Азотсодержащие соединения нефтей за счет неподеленных пар электронов азота способны образовывать донорно-акцепторные связи и комплексные соединения с галогенами, солями металлов ртути, цинка, олова, хрома(П1), меди (II) и других, карбонилами железа [207]. Однако из-за наложения электрических моментов диполя серу-, азот- и кислородсодержащих соединений, например для иодидов, амино-, тио- и ал-коксицодидов (6,67—33,33) 10 Кл-м с помощью комплексообразования невозможно селективное выделение или разделение этих классов соединений. [c.91]

    У иона Поэтому ион МО тронных пар. Молекула же N14.) имеет несвязывающую (неподе-ленную) электронную пару (рис. 46) и, следовательно, может выступать в качестве донора электронной пары. В результате донорно-акцепторного взаимодействия иона Zп + и молекул NN,1 образуется комплексный ион Zn (N14.3)41 Вследствие -гибридизации орбиталей цинка этот ион имеет форму тетраэдра  [c.74]

    Карбонилы — комплексные соединения, в которых лигандами являются молекулы оксида углерода(П) Ре(С0)5, N (00)4. Химические связи в молекулах карбонилов металлов образованы аналогично химич ским связям между другими лигандами и ионами металлов. Электростатические представления для объяснения ее возникновения здесь не подходят. С позиций методов ВС (за счет донорно-акцепторного взаимодействия неподеленных электронных пар лигандов и вакантных орбиталей атома металла) и МО (образование заполненных электронами связывающих и несвязывающих орбит 1лей — правило 18) такие комплексы возможны. Например, атом никеля с электронной конфигурацией №. ..3 45 имеет 10 валентных электронов. Для выполнения правила 18-ти электронов необходимы еще 8 электронов, которые могут поставить 4 лиганда [c.366]

    Однако часто наблюдаются отклонения от правила Сиджвика. Например, совершенно устойчивый мономерный ион [Р1(ЫНз)4 + имеет ЭАН, неравный атомному номеру следующего за платиной инертного элемента родона. При вычислении эффективного атомного номера [Со(ЫНз)5С1]С12 надо учитывать строение комплексного соединения, заряд комплексного иона, атомный номер центрального атома. Атомный номер Со равен 27. Пять молекул аммиака образуют донорно-акцепторные связи за счет свободных пар электронов. Заряд комплексного иона +2. Внутрисферная хлорогруппа предоставляет для связи один электрон. Суммируя, находим, что значение эффективного атомного номера пентамминахлорокобальтихлорида равно 27+5-2+[ —2—36, т. е. соответствует атомному номеру инертного газа аргона. Для соединения триамминового типа [Со(ЫНз)зС1з] он также равен l27-f 3 2 + 3= 3 6. Таким образом, при переходе от соединений одного типа к другому эффективный атомный номер не изменяется. [c.247]

    Точно установлено образование таких ассоциатов, как ВаС1+, АдСЬ , Ь С12 . В некоторых случаях на кулоновские силы накладываются слабые Ван-дер-Ваальсовы силы и силы типа водородных и донорно-акцепторных взаимодействий. При развитии донорно-акцепторного взаимодействия трудно провести резкую границу между ионным ассоциатом и комплексным ионом. [c.288]

    Известно, что металлы составляют основную часть всех элементов ( — 75%) периодической системы. Для них, как пранило, характерны низкие значения потенциалов ионизации и в связи с этим легкость образования положительных ионов. Металлы, а тем более их положительные ионы, имеют во внешнем электронном слое несколько вакантных орбиталей. Поэтому атом или ион металла может взаимодействовать по донорно-акцепторному механизму с нейтральными молекулами или нонами, обладаюшими неподеленной парой электронов. Последние называют лигандами. Говорят, что они координированы центральным атомом. Соединения, построенные по такому принципу, называются комплексными или координационными соединениями. Так, например, ион М может образовать комплексное соединение за счет вакантных орбиталей — одной 35- и трех Зр-. Атом никеля, электронная конфигурация которого [Ar]4s Зii имеет три вакантные 4р-орбитали и может с небольшой затратой энергии перейти в состояние с дополнительной вакантной З -орбиталью  [c.85]

    Донорно-акцепторное взаимодействие между разными молекулами приводит к образованию сложных соединений, которые называются комплексными соединениями. Рассмотрим в качестве примера взаимодействие между молекулами А1С1з и МНз- Атом азота в молекуле ЫНз имеет неподеленную пару электронов и играет роль донора, а атом алюминия в молекуле А1С1з — свободную орбиталь и иг- [c.69]

    В комплексных катионах и анионах Си" и А имеют координационное число, равное 2, а Си " и Аи — равное 4. Катионы Си в аквакомплексаХ и некоторых других могут иметь координационное число, равное 6. При растворении в воде безводного сульфата меди (П) образуются катионы [Си(Н20)4] При сильном разбавлении раствора тетрааквакомплексы переходят в гексааквакомплексы [Си(Н20)б] .Сульфат меди кристаллизуется из водных растворов с пятью молекулами воды СиЗО, бНаО. При нагревании легко удаляется только одна молекула воды, так как четыре молекулы Н2О связаны с Си " донорно-акцепторными связями. [c.305]

    Комплексообразование —это процесс образования стабильной (Ку О, ) молекулярной частицы (атомно-молекулярной, ионномолекулярной или ион-ионного ассоциата) из способных к независимому существованию более простых атомно-молекулярных частиц (атомов, молекул, ионов) за счет донорно-акцепторной (коордЬнационной) а-, я-, дативной я- или б-связей. Эта частица носит название комплексной. [c.277]


Смотреть страницы где упоминается термин Комплексны донорно-акцепторные: [c.169]    [c.59]    [c.82]    [c.397]    [c.116]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.348 ]




ПОИСК





Смотрите так же термины и статьи:

Акцепторная РНК

Донорно-акцепторная связь. Комплексные соединения

Донорно-акцепторный механизм образования связи Комплексные соединения

донорные



© 2025 chem21.info Реклама на сайте