Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливинилхлорид действие излучения

    Полимеризация винилхлорида под действием излучения продолжает привлекать внимание исследователей. Радиационная полимеризация винилхлорида увеличивает стоимость полимера приблизительно на 5%, однако значительно повыщает его чистоту и улучшает физические свойства . Кроме того, применение излучения позволяет осуществлять полимеризацию в условиях низких температур, что имеет большое значение для получения стереорегулярного поливинилхлорида . [c.468]


    Поливинилхлорид (ПВХ). Гомополимер и сополимер — достаточно чувствительны к действию излучения. Изменения в структуре полимера легко фиксируются с помощью спектрофотометра. [c.246]

    Кажуш,аяся энергия активации процесса уничтожения радикалов под действием излучения очень мала. В поливинилхлориде она равна [c.347]

    Установлены также изменения строения и механических свойств полиметилметакрилата, полиизобутилена, поливинилхлорида и других полимеров под действием излучений высокой энергии [c.162]

    К первой группе относятся полимеры, которые под действием излучения сшиваются (вулканизуются) с образованием трехмерной молекулярной сетки при это.м уменьшается растворимость и теряется способность переходить в вязко-текучее состояние полиэтилен, поливинилхлорид, каучуки (кроме бутилкаучука), полистирол. Вторую группу составляют полимеры, претерпевающие под действием излучения суммарный процесс деструкции полиизобутилен и бутилкаучук, полиметакрилаты, политетрафторэтилен и политрифторхлорэтилен. Было высказано предположение, что большую роль в этих процессах играет характер перераспределения п локализации первично поглощенной полимером энергии излучения (1952 г. [188]). Наличие четвертичных атомов углерода в главных цепях макромолекул способствует расщеплению последних, а присутствие ароматических групп — стабилизации вследствие передачи к ним поглощенной макромолекулой энергии и ее рассеяния при увеличении размеров боковых групп в ряду полимеров одной природы возрастает относительная роль процессов сшивания. Введение в полимерный материал низкомолекулярных веществ, в том числе пластификаторов, интенсифицирует деструкцию благодаря взаимодействию молекул этих веществ с полимерными ]>а-дикалами, вследствие чего рекомбинация последних затрудняется (1952 г. [188, 1921). [c.365]

    Один из распространенных полимерных дозиметров — дозиметр на основе пленки из непластифицированного поливинилхлорида, которая под действием излучения изменяет свою оптическую плотность [153]. Они служат как для измерения поглощенных доз в исследовательской практике, так и для контроля степени облученности объектов в производственных радиационно-химических процессах. Измерение оптической плотности пленок (толщиной 0,3 мм) проводят спектрофотометрическим способом при длинах волн 396 и 480 нм [154], для которых наблюдается хорошая линейная зависимость между оптической Плотностью пленки и поглощенной дозой в интервале [c.52]


    Для окраски поверхностей защитных камер используется специальная краска, состоящая из поливинилхлорида с добавкой чувствительного к кислотам желтого азокрасителя [11]. Это покрытие обладает свойством изменять желтый цвет на красный под воздействием определенной дозы у- или р-излучения. Изменение цвета окрашенной поверхности в тех местах, где этого не должно быть, указывает на необходимость замены покрытия, ставшего неэффективным. Краска покрывается тонким слоем лака для поглощения УФ-излучения. Это также делает ее устойчивой к действию паров, слабых растворов кислот и к длительному нагреву при температуре 80° С. [c.14]

    К важнейшим полимерам нефтехимического синтеза относятся синтетические каучуки общего и специального назначения, а также полиэтилен, политрифторэтилен, поливинилхлорид, поливиниловый спирт, полистирол, полиэтилентерефталат, находящие широкое применение на практике. ИК-спектры указанных полимеров изучены в диапазоне частот 400—4000 см и установлены спектрально-структур-ные корреляции. По трем полимерам — полиэтилену, поливинилхлориду и полиэтилентерефталату — проведена серия экспериментов по изучению действия ионизирующего излучения на молекулярную структуру полимеров. [c.86]

    Полимерные перекиси и гидроперекиси, образующиеся при действии ионизирующего излучения на полимер в присутствии воздуха, могут быть использованы для модификации поверхности волокон и пленок. Так, к полиэтилену и полипропилену методом облучения на воздухе были привиты полиакрилонитрил, полистирол и полиметилметакрилат [141, 143]. Метод с использованием предварительного облучения ионизирующим излучением на воздухе был применен для прививки к поливинилхлориду, [c.288]

    В странах Западной Европы и США все шире применяют пластмассовые рамы, которые по сравнению с традиционными деревянными и алюминиевыми имеют большие преимущества в отношении тепло- и звукоизоляции, простоты монтажа и ухода. Основной полимер для их производства — поливинилхлорид специальных сортов с повышенными ударопрочностью и атмосферостойкостью, получаемый модификацией поливинилхлорида хлорированным полиэтиленом, полиакрилатами, сополимером этилена и винилацетата, этиленпропиленовым каучуком. Поливинилхлоридные композиции содержат обычно до 15% диоксида титана для защиты полимера от действия УФ-излучения, стабилизаторы, наполнители, главным образом аппретированный карбонат кальция. Иногда для обеспечения лучшей атмосферостойкости рамы изготовляют соэкструзией поливинилхлорида с полиметилметакрилатом, образующим наружный защитный слой. Применяют и облицовку деревянных рам поливинилхлоридной пленкой, предохраняющей дерево от действия влаги. Распространены также комбинированные рамы, включающие профили из различных материалов алюминия, поливинилхлорида, пенополиуретана, полипропилена. [c.230]

    Применение метода ЭПР для выяснения химизма процессов деструкции поливинилхлорида под действием ионизирующего излучения описано также и в других работах З1з-з19. некоторые авторы рекомендуют использование для этих же целей метода дифференциального термического анализа [c.485]

    В таких полимерах, как политетрафторэтилен, поливинилхлорид и поливиниловый спирт, величина отношения числа образовавшихся поперечных связей к числу разорванных обычно меньше. Установлено, что диффузия гелия и аргона в первых двух поли.ме-рах увеличивается с повышением дозы у-излучения так же, как и растворимость аргона в политетрафторэтилене-" . При действии у-излучения на поливиниловый спирт заметно увеличивается скорость диффузии и растворимость четыреххлористого углерода, что приводит в конечном счете к образованию сильно набухшего структурированного геля . [c.247]

    Поливинилхлорид и сополимеры хлористого винила благодаря ряду ценных химических и физико-механических свойств нашли широкое распространение в различных областях промышленности и народного хозяйства. Вместе с тем, как гомополимер, так и сополимеры винилхлорида имеют весьма существенный недостаток — они сравнительно легко разрушаются под действием физических (тепло, излучения) и химических (кислород, озон) агентов и теряют при этом свои ценные качества. [c.133]

    Согласно основному положению фотохимии, излучение, соответствующее определенному диапазону длин волн, будет оказывать на вещество какое-либо действие лишь в том случае, если последнее способно поглощать в данной области спектра. Поглощенная веществом энергия может быть израсходована на инициирование фотохимических реакций (прямого фотолиза или сенсибилизированных процессов) или же превращена в излучения (флуоресценция, фосфоресценция) и тепловую энергию [33—35]. Весьма часто полимерные соединения обладают способностью к поглощению в тех же областях спектра, что и соответствующие им мономерные вещества. Для С—С-связи винилхлорида абсорбционный максимум лежит Б области —300 мц [36, 37]. У поливинилхлорида поглощение в ультрафиолетовой области спектра связано, по-видимому, с наличием в полимерных молекулах ненасыщенных структур [14]. [c.141]


    Согласно данным о механизме распада поливинилхлорида и сополимеров винилхлорида, а также о факторах, влияющих на скорость распада под действием тепла, света, ионизирующих излучений, кислорода, озона, микроорганизмов, различных химических реагентов и других причин, стабилизаторы должны обеспечивать замедление термо- и термоокислительных, фотолитических, радиохимических и сенсибилизированных свободнорадикальных цепных реакций распада полимера поглощение радиации в области 200— 400 м 1, подавление отрицательного действия продуктов распада [c.164]

    При термодеструкции поливинилхлорида (ПВХ) в температурном интервале до 613 К обнаружено определенное влияние способа получения полимера на кинетику процесса и термостабильность полимера [3]. Было установлено, что полимеры, полученные полимеризацией под действием у-излучения и пероксида бензоила (ПБ), обладают примерно одинаковой стабильностью, а ПВХ, полученный инициированием полимеризации динитрилом азобисизомасляной кислоты (ДАК), имеет заметно более низкую термостабильность в температурном интервале 493—543 К. Однако при % 60%-ной потере массы наблюдается стабилизация процесса термодеструкции всех исследованных образцов ПВХ, что, по-видимому, связано со значительным дегидрохлорированием полимера с образованием полиеновых и сшитых структур. [c.31]

    Исключительно большое значение в последние годы приобрела радиационно-химическая технология, изучающая и разрабатывающая методы и устройства для наиболее экономичного осуществления с помощью ионизирующих излучений физико-химических процессов с целью получения новых материалов, а также придания материалам и готовым изделиям улучшенных (или новых) эксплуатационных свойств. Наибольшего успеха радиационно-химическая технология (РХТ) достигла в связи с разработкой процессов радиационной модификации полимеров (особенно полиэтилена и поливинилхлорида). Радиационная модификация (т. е. изменение свойств под действием излучения) позволяет создать, например, в полиолефинах более жесткую структуру, повысить термостойкость, что дает возможность изготовленные из них конструкционные материалы эксплуатировать при высоких температурах вплоть до температуры термолиза. Наряду с этим улучшаются и электрофизические свойства. Облученный полиэтилен используют для изоляции высокочастотных кабелей вместо дорогого тефлона. Такая замена позволяет сэкономить до 200 руб. на 1 км кабеля. В нашей стране осуществлен процесс радиационной вулканизации изделий на основе силоксановых каучуков с помощью у-излучения. Облучая пропитанную мономером древесину низкого качества (оси.пу, березу), получают древесио-пластические компо- [c.93]

    Зисман и Бопп [58] подвергали широкий ассортимент применяемых в промышленности пластмасс действию излучения ядерного реактора (р- и -лучей и нейтронов) и измеряли среди прочих свойств изменение сопротивления после однократного продолжительного облучения. Их измерения сопротивления не выходили за пределы 10 ом см, н в результате они не нашли никаких изменений в таких хороших диэлектриках, как полистирол и полиэтилен. Уже отмечался эффект, наблюдавшийся в поливинилхлориде. Вообще в тех случаях, когда отсутствовали химические реакции, эффекты, которые авторы могли наблюдать, были сравнительно малы или равны нулю. Более точные измерения, без сомнения, позволили бы обнаружить уменьшение сопротивления всех исследованных материалов. [c.82]

    При изучении процесса фотодеструкции Кенион [140] показал, что па алкилхлориды и, следовательно, на чистый ПВХ не должно действовать излучение с длиной волны, превышающей 2350 А. Однако практически оказалось, что полимер поглощает свет с длиной волны больше указанной и подвергается при этом деструкции инициирование процесса фотодеструкции осуществляется, по-видимому, в результате поглощения света примесями. Методом ИК-спектроскопии было найдено, что при действии света на полимер в присутствии воздуха увеличивается поглощение, характерное для карбонильных групп, а присутствие при облучении поливинилхлорида карбонильных соединений типа ацетона приводит к повышению скорости деструкции. Но даже в чистом ПВХ имеет место некоторое поглощение света и деструкция, что обусловлено, по мнению Кениона, наличием в молекуле этого полимера ненасыщенных групп, образовавшихся в результате происходящего в ничтожной стенени во время получения полимера отщепления хлористого водорода. [c.85]

    Согласно литературным данным, в США и Англии изготавливаются в промышленных масштабах для использования в дозиметрии окрашенный полиметилметакрилат и бумага, покрытая поливинилхлоридом, содержащим краситель 1427, 437]. По изменению их окраски можно определять дозы в пределах от 0,1 до Ъ Мрад. В США для измерения доз различных видов излучения широко применяются выпускаемые промышленностью пленки из целлофана, содержащего некоторые красители [312, 352, 353]. Эти пленки обесцвечиваются под действием излучений. Степень обесцвечивания находится в линейной зависимости от величины дозы при ее изменениях от 0,1 до 10 Мрад. Все эти системы характеризуются независимостью показаний от изменений мощности дозы и температуры во время облучения, а также отсутствием эффекта последействия. До облучения они могут храниться в темноте в течение длительного времени. Эти системы используются для определения доз электронов и пространственного распределения поглощенной энергии в облучаемой среде. С их помощью контролируются процессы радиационной обработки различных материалов в производственных условиях. Для решения аналогичных задач в Институте физической химии им. Л. В. Писаржевского АН УССР был разработан метод химической дозиметрии, основанный на применении пленок из окрашенного поливинилового спирта [94]. Кроме того, был тщательно проверен и усовершенствован [40, 41 ] предложенный в свое время Гебелем [345] способ дозиметрии при помощи пленок из непластифицированной триацетилцеллюлозы. [c.56]

    Преимуществом этого метода является возможность создания участков сопряжения в готовых изделиях, таких, как волокна, ткани, пленки. Вследствие образования ненасыщенных линейных участков или даже пространственных сопряженных структур- об-луче.нные полимеры характеризуются значительным уменьшением сопротивления, появлением парамагнетизма, возрастанием жестко-сти 9. Полимер приобретает окраску полиэтилен, например, в результате действия излучения становится желтоватым или коричневатым, поливинилхлорид — зеленоватым, полиметилметакри-лат — коричнево-красным . [c.149]

    Полимеры, подвергающиеся при действии излучения деградации полиизобутплеи, поливинилхлорид, поливинилиденхлорид, политетрафторэтилен, политрифторхлорэтилен, полиметилметакрилат, целлюлоза. [c.91]

    Уже на начальной стадии этих исследований была установлена зависимость радиационной стойкости полимеров от их химической природы. Было найдено, что такие полимеры, как полиметилметакрилат, полиизобутилен и бутилкаучук, под действием излучения быстро теряют прочность при одновременном снижении молекулярного веса. В то же время другие полимерные материалы (резины на основе бутадиенового, бутадиеннитрильного и натурального каучуков, пластикаты на основе поливинилхлорида) при радиационных воздействиях, наоборот, становятся жестче и при больших дозах могут превращаться в твердые эбонитоподобные вещества (1947 г.). Полимеры, макромолекулы которых содержат ароматические группы (полистирол, бутадиенсти-рольный каучук), обнаружили высокую радиационную стойкость (1951—1952 гг.) [188]. Было показано, что устойчивость пластиков может быть существенно повышена путем введения минеральных наполнителей (1950 г.). Выяснилось, что большую роль в радиационном разрушении полимеров, особенно находящихся в стеклообразном состоянии, играют процессы газовыделения, поскольку образующиеся газообразные продукты создают в образцах внутренние напряжения, приводящие к появлению неоднородностей, вздутий, трещин и пр. (1951 г. [188, 189]). [c.364]

    Возможности и перспективы радиационной химии. Радиацион ная химия имеет уже более чем 25-лстний стаж развития. Начало ее было положено применением и. )лучения для облагораживания полиэтилена. В настоящее время в мире используется около 40 промышленных методов радиоактивного излучения. Ввиду того, что активация реагентов практически любыми лучами не обладает селективным действием, она применяется в тех случаях, когда мишенью оказывается не фрагмент молекулы, т. е. та пли иная химическая связь, и даже не молекула, а макротело. Таковыми могут быть, например, тот же полиэтилен или поливинилхлорид, которые при облучении приобретают большую термостойкость и твердость благодаря сп1иванию их линейных макромолекул в трех- мериукз сетку. [c.237]

    Внутримолекулярные превращения происходят под действием физических факторов (излучения, тепла, света) или химических реагентов. При этом в отличие от полимераналогичных превращений химические реагенты, вызывающие внутримолекулярные превращения, не входят в состав полимерной цепи. К внутримолекулярным реакциям относится дегидратация, ангидризация, дегидрохлорирование, декарбоксилироваяие и др. Так, при дегидратации поливинилового спирта или при дегидрохлорировании поливинилхлорида получается поливинилен — полимер, содержащий систему сопряженных связей и обладающий полупроводниковыми свойствами  [c.88]

    С, Сраал —57 С, плотн. жидк. 1,45, г/см ) . триоксидифторид ОзРг (С д —189 С) и др. Окисляют воду.-Термически неустойчивы. Получ. взаимод. элементов в. электрич. разряде или под действием Уф излучения р-ция Гг с водным р-ром щелочи. Перспективные окислители или добавки к окислителям ракетного топлива ПДК. 0,1 мг/м . КИСЛОРОДНЫЙ ИНДЕКС, наименьшая объемная доля Ог в его смеси с N2, при к-рой еще возможно свечеобразное горение полимерных материалов в условиях спец. испытаний. Использ. для контроля горючести пластмасс и при разработке полимерных материалов пониж. горючести. К. и. жесткого пенополиуретана, напр., составляет 15,3, полиэтилена 17,4, древесины 21, поливинилхлорида 40, политетрафторэтилена 95%. [c.256]

    По своим свойствам хлорсульфонированный полипропилен аналогичен хлорированному. Вязкость хлорсульфонированного полипропилена в растворе, однако, ниже вязкости хлорированного полипропилена с таким же содержанием хлора и зависит от общего содержания хлора [79]. Хлорсульфонированный полимер пропилена полностью растворим в хлорированных и ароматических углеводородах, частично — в сложных эфирах, кетонах, не растворяется в кислотах и спиртах. При температуре выше 110° С н под действием ультрафиолетового излучения полимер претерпевает деструкцию, которая сопровождается отщеплением хлористого водорода и сернистого ангидрида. Отсюда понятна необходимость стабилизации хлорсульфонированного полипропилена, например стабилизаторами, применяемыми для защиты поливинилхлорида. [c.137]

    Отходы пластмасс подразделяют на производственные и потребления. Направления утилизации технол. отходов (глыбы, слитки, обрезки и др.) мех. переработка с целью приготовления той же продукции, при получении к-рой они образовались, и менее ответств. изделий (напр., с.-х. пленка и мешки для минер, удобрений, тара для упаковки хим. реактивов и товаров бытовой химии, детские игрушки) хим. переработка с получением чистых полимеров, пластификаторов, мономеров и их производных термич. переработка, напр, пиролиз с образованием сырья для орг. синтеза и углеродсодержащего остатка (основа активных углей, используемых в системах очистки отходящих газов и сточных вод). Загрязненные пром. и бытовые отходы применяют для строит, нужд (наполнители разл. изделия-плиты, блоки, трубы, кровля и др.) переработка таких отходов наиб, трудоемка, поскольку связана с их сбором, сортировкой, очисткой от посторонних примесей, уплотнением и гранулированием. Нек-рые виды пластмасс (полиэтилен, полипропилен, поливинилхлорид) способны к биодеструкции, т. е. могут разлагаться под действием бактерий, плесени и грибков для интенсификации процесса добавляют крахмал и Ре Оз, к-рые служат центрами биораспада. Разрушение пластмасс возможно под действием УФ излучения однако продукты распада отходов загрязняют окружающую среду. Осн. направления переработки пиролиз, деполимеризация с получением нсходных продуктов вторичная переработка. [c.436]

    Поливинилхлорид (-СН2-СНС1-) получают радикальной полимеризацией винилхлорида, например, под действием света, чаще всего водно-эмульсионным или водно-суспензионным методами. Полимеры винилхлорида растворяются в галогенпроизводных углеводородов и не стойки к действию ионизирующих излучений. При длительном хранении полимер желтеет и деструкти уется с выделением вредных веществ. Окислительные агенты действуют на него разрушительно. Изделия из поливинилхлорида имеют высокую поверхностную твердость и достаточно хрупки, поэтому для получения пленочных материалов его пластифицируют сложными эфирами. Даже пластифицированный поливинилхлорид имеет невысокую морозостойкость. [c.57]

    Электрические свойства диэлектриков зависят от химического строения и изменяются от воздействий, меняющих химическое строение и состав. Так, выделение малых количеств хлористого водорода из поливинилхлорида при действии тепла и света заметно увеличивает проводимость, диэлектрическую проницаемость и диэлектрические потери. Можно было ожидать, что ионизирующее излучение окажет аналогичное воздействие. Зисман и Бонн [58] нашли, что объемное сопротивление поли-винилхлоридацетата может быть уменьшено при помощи облучения в ядерном реакторе от 10 до величины меньшей чем 10 ом см. Бирн н другие [59] наблюдали выделение хлора и фтора из поливинилхлорида и политрифторхлорэтилена. [c.79]

    Деструкция полимера сравнительно легко происходит под действием коротковолнового или ядерного излучения, влияние которого на свойства поливинилхлорида изучалось Бонном, Сисманом [240], Чарлсби [241], Джонесом [242], Райаном [243] и др. [c.278]

    Образование макромолекул с ненасыщенными связями, сопровождающееся выделением низкомолекулярных соединений. В. п. подобного тина обычно протекают под действием тепла, света, излучений высокой энергии и ускоряются в присутствии катализаторов — к-т, оснований, солей (напр., НС1, Fe lg, AIGI3). Так, при термич. обработке или облучении УФ-светом поливинилхлорида и поливинилового спирта происходят соответственно дегидрохлорирование и дегидратация с образованием полимеров с системой сопряженных связей — поливиниленов  [c.243]

    Прививку непредельных соединений на поливинилхлорид проводят В присутст в1ии переки сных инициаторов 2,1585 путем предварительного озонирования поливинилхлорида 5 °, под действием искрового разряда ионизирующей радиации 1588,1595, JJ у-излучения Подробно изучена раство- [c.515]

    Химически активным может оказаться только часть всего излучения, которое обычно поглощается данным материалом. Вследствие высокой регулярности своей структуры большинство чистых органических полимеров, полученных синтетическим путем (полиэтилен, полипропилен, поливинилхлорид, по истирод и т. д.), не поглощают свет с длинами волн больше 300 ммкм и, следовательно, не подвергаются действию солнечного света. Тот факт, что эти полимеры зачастую все же разрушаются под действием солнечного света, объясняется присутствием небольших количеств включений или наличием структурных дефектов, которые поглощают свет и оказываются инициаторами деструкции. Подавляющее количество поглощенной световой энергии, как правило, диссипирует путем либо безызлуча-тельных процессов (вращения и колебания), либо вторичного излучения (флуоресценция). [c.356]


Смотреть страницы где упоминается термин Поливинилхлорид действие излучения: [c.164]    [c.174]    [c.88]    [c.256]    [c.165]    [c.167]    [c.11]    [c.246]    [c.697]    [c.11]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.65 , c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Поливинилхлорид



© 2025 chem21.info Реклама на сайте