Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядро атома массовое число

    Ядро атома некоторого элемента содержит 16 нейтронов, число электронов в атоме равно 15. Назовите элемент, изотопом которого является данный атом. Напишите его символ с зарядом ядра и массовым числом. [c.63]

    Ядро атома некоторого элемента содержит 16 нейтронов, а электронная оболочка этого атома — 15 электронов. Назвать элемент, изотопом которого является данный атом. Привести запись его символа с указанием заряда ядра и массового числа. [c.51]


    БЕТА-РАСПАД ( -распад) — радиоактивное превращение атомного ядра, при котором испускаются р-частицы — электроны (р ) или позитроны (Р+). К Б.-р. относят также захват атомным ядром электронов с ближайшей к ядру электронной оболочки. Массовое число ядра при Б.-р. не изменяется, заряд ядра увеличивается на единицу при испускании электрона и уменьшается на единицу при испускании позитрона или захвате электрона. При этом атом химического элемента превращается в атом другого (соседнего) элемента. [c.44]

    Атомные ядра включают N нейтронов и Z протонов. Параметры и свойства атомных ядер влияют на протекание химических процессов, так как масса, заряд, энергия связи, устойчивость и ядерный спин ядра в значительной мере определяют свойства атома в целом. Отметим прежде всего, что с помощью масс-спектроскопических методов можно обнаружить разность ме кду массой ядра и массой, найденной простым суммированием масс составляющих его нуклонов, — так называемый дефект массы Ат. Энергетический эквивалент дефекта массы представляет собой энергию связи нуклонов в ядре. Ат = = 1,0078 Z+1,0087 N —т. Для ядра гелия Ат = 0,03 а. е. м., что соответствует 27,9 МэВ. Энергия связи ядра химического элемента приблизительно линейно зависит от массового числа A=--Z- -N. Если построить график зависимости средней энергии связи па один нуклон от массового числа, наблюдается максимум при средних значениях массового числа. Таким образом, ядра со средним массовым числом более устойчивы, чем тяжелые или легкие. Следует отметить, что тяжелые ядра богаче нейтронами, чем легкие. При Z>84 уже не существует стабильных ядер. Различают следующие виды ядер изотопы (равные Z, неравные N), изотоны (неравные Z, равные N), изобары (неравные Z, неравные N, равные А), изомеры (равные Z и N, однако внутренняя энергия неодинакова). Для нечетных А имеется лишь одно стабильное ядро, а для четных — несколько стабильных ядер изобаров (правило изобар Маттауха). [c.34]

    В соответствии с законом, который получил название принцип Паули, для полного описания электрона необходимо использовать четыре квантовых числа, позволяющие представить все электроны любого атома в виде электронной конфигурации. Таким образом, зная заряд ядра 2, массовое число А и квантовые числа, можно охарактеризовать любой атом периодической системы. Различные виды атомов получили общее название — нуклиды. Нуклиды с одинаковыми значениями Z, но различными значениями А и различным числом нейтронов в ядре (обозначают /) называют изотопами. Большинство элементов существует в природе как смесь изотопов. [c.16]


    Атом представляет собой сложную микросистему, состоя-ш,ую из ядра и движущихся вокруг него электронов. Размеры атомов и их массы очень малы. Радиус ядра составляет примерно 10 ж, а величины радиусов атомов—м. Масса атомов различных элементов измеряется в пределах 0 24 10-22 2, Основными характеристиками атома являются заряд его ядра и массовое число. [c.69]

    Порядковый номер серы равен 16, следовательно, атом серы содержит 16 протонов он должен также содержать 16 электронов. Массовое число серы равно 32, следовательно, в ее атоме должно быть 32 — 16 = = 16 нейтронов. Атомный символ серы 8. Удаление из ее ядра одного нейтрона приводит к образованию изотопа серы-31 оно не влияет на число электронов. Удаление протона ведет к образованию фосфо-ра-31 чтобы атом после этого остался нейтральным, из него должен быть удален также один электрон. [c.479]

    Какие заряд ядра, массовое число и порядковый номер имеет атом, содержащий 17 протонов, 18 нейтронов н 17 электронов Как записать символ атома, отличающегося от предыдущего только тем, что ом содержит 18 электронов  [c.28]

    Энергию связи ядра можно подсчитать, если сравнить сумму масс частиц, составляющих данное ядро, с фактической массой mi этого ядра. Действительно, если мысленно представить себе синтез ядра с массовым числом А и зарядом Ze из (Л—2) нейтронов и Z протонов, то при этом выделится энергия, равная по величине абсолютному значению энергии связи ядра Е. Но если энергия системы уменьшится на Е, то, согласно одному из важнейших следствий специальной теории относительности, масса системы уменьшится на величину Ат, причем между Ат и Е существует следующее соотношение  [c.12]

    Если при распаде радиоактивного ядра выбрасывается а-частица [2р, 2п], то получается новое ядро, порядковый номер которого на два номера меньше, а массовое число на 4 единицы меньше материнского ядра. Следовательно, образовавшееся ядро отвечает атому элемента, занимающему в таблице Менделеева место на два номера меньше. [c.51]

    Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных электронов. Практически вся масса атома сосредоточена в ядре, которое по размеру намного меньше атома. Ядро состоит из двух основных компонентов — протонов и нейтронов Протон — это положительно заряженная частица с массой в 1850 раз большей, чем масса электрона. Поскольку число протонов в ядре равно числу электронов, атом всегда электрически нейтрален. Число протонов в атоме называется атомным номером Z. Нейтрон — это незаряженная частица, масса которой приблизительно такая же, как у протона. Сумма протонов и нейтронов в ядре называется массовым числом А А = Z N, где N — число нейтронов. [c.185]

    Массовое число. А, и масса ядра, выраженные в атомных единицах массы, не совпадают, в частности, из-за того, что масса протона или нейтрона не равна в точности 1 а.е.м. В приложении 2 указано, что масса протона составляет 1,007276 а.е.м., а масса нейтрона 1,008665 а.е.м. Однако есть и другая причина атом устойчивого изотопа имеет меньшую массу, чем сумма масс всех электронов, протонов и нейтронов, из которых он состоит. [c.407]

    При а-распаде ядро атома испускает два протона и два нейтрона, связанные в ядро атома гелия аНе это приводит к уменьшению заряда исходного радиоактивного ядра на 2, а его массового числа на 4. Таким образом, в результате а-распада образуется атом элемента, смещенного на два места от исходного радиоактивного элемента к началу периодической системы. [c.92]

    Радиоактивный распад с испусканием р- и а-частиц приводит к изменению заряда ядра, т. е. к превращению исходного ядра в ядро другого элемента. В случае Р -распада атомный номер увеличивается на единицу, при р+-распаде уменьшается на единицу. В обоих случаях массовое число не изменяется. В результате а-распада атомный номер уменьшается на два, а массовое число—на четыре. Часто а- и р-распад ядер сопровождается электромагнитным излучением очень высокой энергии, которое называют у-излучением. Наличие 7-излучения свидетельствует, что первоначально в результате радиоактивного распада образуется ядро в возбужденном состоянии, которое переходит в основное состояние с испусканием у-квантов. а-, р- и у-излучения обладают высокой энергией, измеряемой сотнями тысяч и даже миллионами электрон-вольт. Для сравнения можно сказать, что энергия разрыва одной химической связи измеряется несколькими электрон-вольтами энергия, необходимая для удаления одного электрона из окружающей атом электронной оболочки, измеряется несколькими электрон-вольтами или небольшим числом десятков электрон-вольт. Поэтому каждая а- или р-частица или у-квант могут на своем пути произвести вполне ощутимые действия. Так, в газе, ударяясь о встречные атомы или молекулы, они способны выбивать из них электроны и превращать их в ионы. Поэтому электрическая проводимость газа становится на какой-то очень короткий промежуток времени больше, и если частица пролетела между электродами, то удается зарегистрировать прохождение тока ( вспышку проводимости). Если число распадающихся атомных ядер не превышает нескольких тысяч в секунду, то каждая вспышка может быть зарегистрирована отдельно (проводимость, возникшая в результате пролета одной частицы успеет упасть до малых значений перед пролетом следующей частицы) и тем самым можно сосчитать число актов радиоактивного распада. Это можно сделать и другим способом, поместив радиоактивное вещество в специальный раствор, содержащий какой-либо сцинтиллятор — вещество, молекулы которого под действием р-частиц начинают испускать свет. Естественно, что каждая р-частица может вызвать свечение не очень большого числа молекул сцинтиллятора, однако современные высокочувствительные фотоумножители позволяют регистрировать такие слабые вспышки, и по числу вспышек света можно определить число распавшихся радиоактивных атомов. [c.27]


    Рассмотрим строение атома какого-нибудь элемента, например натрия, с позиций протонно-нейтронной теории. Порядковый номер натрия в периодической системе 11, массовое число 23. В соответствии с порядковым номером заряд ядра натрия равен 11+. Следовательно, в атоме натрия имеется И электронов, сумма зарядов которых равна положительному заряду ядра. Если атом натрия потеряет один электрон, то положительный заряд ядра будет на единицу больше суммы отрицательных зарядов электронов (10), и атом натрия станет ионом с зарядом 1+. Заряд ядра атома равен сумме зарядов 11 протонов, находящихся в ядре, масса [c.41]

    Массовое число обычно пишут слева вверху у символа атома. Так, запись С означает атом углерода с ядерным массовым числом 12. Ядерное вещество характеризуется очень большой плотностью, что обусловлено исключительно большими силами, которые удерживают протоны и нейтроны в ядре. Ядерные силы действуют только на очень малых расстояниях порядка м. [c.32]

    Если же при распаде выбрасывается Р -частица (е — электрон), то новое ядро имеет то же массовое число, а порядковый номер на единицу больше порядкового номера материнского ядра и соответствует атому эле- [c.51]

    Наряду с термином изотопы используется термин нуклид . Нуклид — это атом со строго определенным значением массового числа, т. е. с фиксированным значением числа протонов и нейтронов в ядре. Радиоактивный нуклид сокращенно называют радионуклид. Например, нуклид 0, радионуклид радионуклид и т. д. Термин изотопы следует применять только для обозначения стабильных и радиоактивных нуклидов одного элемента (см. определение, данное выше). [c.42]

    Атом 5г испускает бета-лучи. Какой атомный номер и какое массовое число имеет ядро, образующееся в результате этого процесса Что это за элемент В свою очередь, образовавшееся ядро также испускает бета-лучи. К образованию какого нового ядра это приводит  [c.97]

    Если атомное ядро испускает альфа-частицу (Не +), заряд ядра уменьшается на две единицы и, следовательно, исходный элемент пре-врашается в элемент, занимающий в периодической таблице место на две группы левее. Его массовое число (атомная масса) уменьшается на 4, т. е. на массу альфа-частицы. При испускании бета-частицы (электрона) заряд ядра увеличивается на единицу без изменения массового числа (наблюдается лишь весьма незначительное уменьщение атомной массы) в этом случае атом данного радиоактивного элемен та превращается в атом другого элемента, занимающего в периодиче ской системе место на одну группу правее. При испускании гамма лучей не происходит изменения ни атомного номера, ни атомной массы Ядерные реакции в ряду уран —радий приведены на рис. 20.6 Важнейший изотоп урана составляет 99,28% природного элемента [c.609]

    Природный бром состоит из двух стабильных изотопов с массовыми числами 79 и 81 и распространенностью соответственно 50,57 и 49,43 ат. %. Ядра обоих изотопов имеют спиновые и ядерные квадрупольные моменты. [c.11]

    Многие химические и физические процессы могут быть объяснены с помощью простых моделей строения атома, предложенных Резерфордом, Бором и другими учеными. Каждая из таких моделей, чем-то отличаясь, тем не менее предполагает, что каждый атом состоит из трех видов субатомных частиц протонов, нейтронов и электронов. Это далеко не полная картина, но для наших целей этого пока достаточно. Протоны и нейтроны образуют ядро атомов. Ядро намного тяжелее электронов. В ядре сосредоточена почти вся масса атома, но ядро занимает лишь ничтожную часть объема. Электроны движутся (часто говорят вращаются ) вблизи ядра по определенным законам. Ядро может быть описано всего лишь двумя числами — порядковым номером атома в периодической системе элементов (его называют атомным номером и обозначают символом ) и массовым числом символ А). [c.15]

    Число протонов в ядре атома принято называть порядковым (атомным) номером и обозначать буквой Z. Оно совпадает с числом электронов, окружающих ядро, поскольку атом должен быть электрически нейтральным. Массовое число атома равно полному числу содержащихся в нем тяжелых частиц протонов и нейтронов. Когда два атома сближаются на достаточное расстояние, чтобы между ними возникло химическое взаимодействие-или, как принято говорить, химическая связь,-каждый атом ощущает главным образом наличие самых внешних электронов другого атома. Поэтому именно эти внещние электроны играют определяющую роль в химическом поведении атомов. Нейтроны в составе ядра оказывают ничтожное влияние на химические свойства атомов, а протоны важны постольку, поскольку они определяют число электронов, которые должны окружать ядро нейтрального атома. Все атомы с одинаковым порядковым номером ведут себя в химическом отношении практически одинаково и рассматриваются как атомы одного и того же химического элемента. Каждому элементу присвоено определенное название и одно- или двухбуквенный символ (обычно заимствованный от греческого или латинского названия). Например, символ углерода-С, а символ кальция-Са. В качестве символа натрия. Ка, взяты две первые буквы его латинского (и немецкого) названия натриум, чтобы отличить его от азота N (латинское название нитроген). В таблице- атомных масс элементов, помешенной на внутренней стороне обложки книги, приведен алфавитный перечень элементов и их символов. [c.15]

    Масса атома практически равна массе его ядра, и его массовое число А равно полному числу протонов и нейтронов в ядре. При данном числе протонов, т. е. при данном атомном номере, число нейтронов может изменяться в некоторых пределах, так что могут существовать атомы одного и того же элемента с разными массами, называемые изотопами. Если элемент является смесью изотопов, то его атомный вес, определяемый химическими методами, представляет собой взвешенное среднее значение веса изотопов. Массы ядер и их строение являются, естественно, важным фактором, определяющим радиоактивность и другие ядерные изменения, но для вопросов химической связи и строения молекул они менее существенны. В настоящей книге достаточно рассматривать каждый атом просто как ядро с зарядом Z, вокруг которого находятся 2 электронов. [c.10]

    Гамма-активационный анализ. Как отмечалось выше, нейтронный активационный анализ оказывается недостаточно эффективным для некоторых элементов. Помимо упомянутого выше фтора следует отметить и цирконий, который содержит пять стабильных изотопов с массовыми числами 90, 91, 92, 94 и 96 (изотопы с массовыми числами 93 и 95 являются радиоактивными с 7 1/2 = 1,5 10 лет для и Т 1/2 = 64 суток для 2г). Очевидно, что нейтронное облучение всех стабильных изотопов с массовыми числами до 92 не приводит к образованию существенной активности, Содержание изотопов 94 и 96 составляет 17,5 и 2,5% ат., а их сечения захвата тепловых нейтронов малы 0,056 и 0,017 барна соответственно. Вследствие этого предел обнаружения циркония относительно велик. Положение улучшается при использовании гамма-активационного анализа под действием фотонов большой энергии. При облучении пучком таких тормозных фотонов мишени из циркония происходит вылет одного нейтрона из ядра и образование радионуклида циркония-89 с периодом полураспада 78,4 часа. Аналогично при облучении мишени, содержащей фтор, образуется фтор-18 с периодом полураспада 109,7 мин. Данный метод перспективен для определения скандия, титана, ванадия и некоторых других элементов, однако широкое применение его сдерживается дефицитом источников фотонов высокой энергии. [c.113]

    Взаимосвязи Э. х. отражает периодическая система элементов Д. И. Менделеева. Ат. номер элемента равен заряду ядра, выраженному в единицах заряда протона численно оп равен числу протонов, содержащихся в ядрах атомов данного Э. х. Число нейтронов, содержащихся в ядрах данного элемента, в отличие от числа протонов, м. б. различным. Атомы одного элемента, ядра к-рых содержат разное число нейтронов, наэ. изотопами. Атом с определ. числом протонов и нейтронов в ядре наз. нуклидом. Общее число протонов и нейтронов в ядре наз. массовым числом. Каждый Э. X. имеет по нескольку изотопов (природных или полученных искусственно). Ат. масса Э. х. равна среднему значению из масс всех его прир. изотопов с учетом их распространенности. Ее обычно выражают в атомных единицах массы (углеродных едшшца.ч-), за к-рую прннята V12 часть массы атома нуклида С атомная единица массы приблизительно равна 1,66057-10 кг, [c.707]

    Ядра всех агомоа данно -о элемсггга имеют одинаковый заряд, т. е. содерл<ат одинаковое число протонов. Но число нейтронов в ядрах этих атомов может быть различным. Атомы, обла/и иощие одинаковым зарядом ядра (и, следовательно, тождественными химическими свойствами), но разным числом нейтронов (а значиг, и разным массовым числом), называют изотопами. Так, природный хлор состоит из двух изотопов с массовыми числами 35 и 37, магний — из трех изотопов с массовыми числами [c.105]

    Радиоактивный распад с испусканием Р- и а-частиц приводит к изменению заряда яДра, т. е. к превращению исходного ядра в ядро другого элемента. В случае Р"-распада атомный номер увеличивается на единицу, при р+-распаде — уменьшается на единицу. В обоих случаях массовое число не изменяется, В результате а-распада атомный номер уменьшается на два, а массовое число — на четыре. Часто а- и р-распад ядер сопровождается электромагнитным излучением очень высокой энергии, которое называют у-излучением. Наличие 7-излучения свидетельствует, что первоначально в результате радиоактивного распада образуется ядро в возбужденном состоянии, которое переходит в основное состояние с испусканием у-квантов. а- и Р-Частицы, так же как и 7-излучение, обладают высокой энергией, измеряемой сотнями тысяч и даже миллионами электронвольт. Для сравнения можно сказать, что энергия разрыва одной химической связи измеряется несколькими эВ энергия, необходимая для удаления одного электрона из окружающей атом электронной оболочки, измеряется несколькими эВ или небольшим числом десятков эВ, Поэтому каждая а- или р-частица или у-квант могут на своем пути произвести вполне ощутимые действия. Так, в газе, ударяясь о встречные атомы или молекулы, они способны выбивать из них электроны и превращать их в ионы. Поэтому газ становится на какой-то очень короткий промежуток времени более электропроводным, и если частица пролетела между электродами, то удается зарегистрировать прохождение тока ( вспышку электропроводности). Если число распадающихся атомных ядер не превышает несколько тысяч в секунду, то каждая вспышкй может быть зарегистрирована отдельно (электропроводность, возникшая в результате пролета одной частицы успеет упасть до малых значений перед пролетом следующей частицы) и тем самым можно считать число актов радиоактивного распада. Это [c.23]

    Заряд ядра равен целому числу 2 (порядковому номеру элемента) единиц зарядов протона. Его пищут слева внизу у символа элемента. Сумму протонов 2 и нейтронов N, содержащихся в ядре атома, называют ядерным массовым числом (или просто массовым числом) А = I. Массовое число обычно пишут слева вверху у символа атома. Так, запись С обозначает атом углерода с ядерным массовым числом 12. [c.399]

    Однако в те времена многих клавишей не хватало. Было известно 63 элемента из 92 естественно существующих. Многие клавиши издавали фальшивые звуки . Так, Д. И. Менделееву пришлось изменить атомные массы урана и тория, которые тогда принимали равными 116 и 120 (вместо 232 и 240) и атомную массу циркония, принимавшуюся в то время равной 138 (вместо 91). Д. И. Менделеев сумел увидеть (вернее, предвидеть) основной закон, согласно которому многие свойства элементов (валентность, атомные объемы, коэффициенты расширения и др.) изменяются периодически с возрастанием атомной массы элементов. Открытие периодического закона затруднялось из-за его сложности. Размеры периодов не одинаковы. Если в первом периоде (Н, Не) содержится всего два элемента, то во втором (Е1—Ые) — восемь, в третьем (Ма—Аг) — снова восемь, в четвертом (К—Кг)—восемнадцать, в пятом (КЬ—Хе)—тоже восемнадцать, в шестом (Сз—Кп)—тридцать два и, наконец, седьмой период оказывается недостроенным. Отметим, что числа элементов в периодах (2, 8, 8, 18, 18, 32) подчиняются общему закону 2п . При п = это выражение дает 2 при л = 2—8, при я=3—18 и при =4— 32. Кроме того, в середине периодической таблицы элементов находится 14 редкоземельных элементов, многие свойства которых (например, валентность) практически не изменяются, несмотря на увеличение атомной массы Трудность открытия периодического закона заключа лась и в том, что истинной независимой переменной, оп ределяющей свойства элементов, должна быть не масса а число электронов в атоме, т.е. заряд ядра. Д. И. Мен делеев, естественно, принял массу за такую переменную так как в механике она в значительной степени опреде ляет движение частиц. Атом был электрифицирован много позднее. Если бы были известны изотопы (атомы с одинаковым зарядом ядра и разными массами, например, водород и тяжелый водород), то, располагая их в ряд по величине массы, вряд ли можно было бы открыть периодический закон. Это удалось потому, что между массовым числом и зарядом ядра имеется определенная связь. Так, в начале таблицы элементов массовое число приблизительно в два раза больше заряда ядра. Атомная масса элемента определяется также его изотопным составом. При расположении элементов по их массовым числам Д. И. Менделееву при составлении таблицы при- [c.312]

    В 1913 г. Фаянс и независимо от него Содди сформулировали правило смещения при радиоактивном распаде. Согласно этому правилу, а-распад приводит к возникновению атома химического элемента, располагающегося в периодической системе Д. И. Менделеева на две клетки левее по отношению к исходному. Действительно, ос-расиад приводит к понижению положительного заряда ядра и порядкового номера на две единицы. р-Расиад способствует повьипению заряда ядра и, следовательно, порядкового номера образующегося элемента на единицу. Образующийся элемент находится на одну клетку правее по сравнению с исходным. 7-Излучение не приводит к превращению одних элементов в другие. Например, атом радия, излучая а-частицы, превращается в радон. Легко вычислить порядковый номер и массовое число радона  [c.43]

    Лит. Лазаренко Е.К. Курс минералогии. М., 1971 Минералы. Справочник, т. 3, в. 1. М., 1972. Д. Н. Возняк. ФЁРМИЙ [Fermium, по имени итал. физика Э. Ферми (Е. Fermi)], Fm — искусственно полученный радиоактивный хим. элемент, ат. и. 100 относится к актиноидам. Для Ф. характерны степени окисления 4- 3 и -Ь 2, более устойчива степень окисления -)- 3. Первый идентифицированный изотоп 2 Fm был извлечен из радиоактивной пыли, собранной в 1952 после взрыва американского термоядерного устройства. Этот изотоп образовался в результате захвата во время взрыва ядрами 17 нейтронов и последующих бета-распадов. Стабильных изотопов не имеет. Известны 15 изотопов Ф. с массовыми числами от 244 до 258. Наиболее долгоживущий из них — альфа-радиоактивный изотоп 5 Fm с нериодом по- [c.635]

    ЭЙНШТЕЙНИЙ [Einsteinium по нмени нем.-амер. физика А. Эйнштейна (А. Einstein)], Es — искусственно полученный радиоактивный хим. элемент, ат. н. 99 относится к актиноидам. Для Э. характерны степени окисления+ 3 и + 2 более устойчива степень окисления -Ь 3. Первый идентифицированный изотоп извлечен из радиоактивной пыли, собранной в 1952 после взрыва американского термоядерного устройства. Этот изотоп образовался в результате захвата во время взрыва ядрами 15 нейтропов и последуюш,их бета-распадов. Известны 14 изотопов Э. с массовыми числами от 243 до 256. Наиболее долгоживущие — альфа-радиоактивный изотоп с периодом полураспада 276 дней и изотоп Es с периодом полураспада 140 дней. Из изотопов Э. легче всего получается (в ядерном реакторе) изотоп 25 Es — альфа-излучатель с периодом полураспада 20 дней. При более длительном облучении в реакторе образуется также изотоп Данных относительно нолучения Э, в металлическом состоянии нет. Мишени из изотопа иснользуют для синтеза более тяжелых трансплутониевых элементов. [c.761]

    Упаковочный множитель. Из рассмотрения масс атомных ядер следует, что массы но прямо пропорциональны массовому числу (сумд1а чисел протонов и нейтронов в ядре). Так, масса обычного атома водорода равна 1,00813, а масса нейтрона равна 1,00897 если бы атом гелия состоял из двух атомов водорода и двух нейтронов без изменения массы, то его масса была бы равна 4,03420, однако в действительности его масса составляет только 4,00386. Массы более тяжелых атомов также меньше тех значений, которые были бы получены путем простого суммирования атомов водорода и нейтронов без изменения массы. [c.550]

    Нобелий (N0)—элемент 102, искусственно полученный радиоактивный химический элемент семейства актиноидов. Первой заявила о получении атомов этого элемента в 1957 г. международная группа ученых, работавших в Стокгольме (Швеция), которая и предложила назвать его в честь Нобеля, основателя фонда международных (Нобелевских) премий. Однако, последующие опыты, выполненные в Беркли (США) и Дубне (СССР), показали, что вывод стокгольмской группы был ошибочен. Первые надежные сведения об изотопах элемента 102 с массовыми числами 251—256 получены в 1963—1967 гг. группой советских физиков под руководством Флерова в Дубне. Для синтеза этих изотопов ядра и, Ри, Ат и Ст облучали ускоренными нонами Ые, О и N. Советские ученые предложили дать 102 элементу название Жолиотий в честь Фредерика Жолио Кюри. Общепринятого названия элемента 102 пока нет. До последнего времени его изотопы получены лишь в микроколичествах. [c.637]

    Электроны в атоме в энергетическом поле ядра образуют его оболочку. Общее число электронов в атоме равно положительному заряду ядра атом — система электронейтральная. Пример Bi, Z = 83, заряд ядра равен +83. Атом в своей оболочке содержит 83 электрона суммарный их заряд —1 -83 = —83. Заряд атома Bi в целом (+83) + -f (—83) = 0. Изменение числа электронов в атоме нарушает электронейтральность его зарядовое состояние частицы изменяется, но химическая природа элемента при этом остается той же. Масса электрона по сравнению с массой нуклона очень мала и составляет всего 5,5-10 у.е., поэтому сколько бы электронов ни содержала оболочка атома, их роль в массе атома в целом незначительна. Так, в атоме Bi на долю электронов приходятся лишь десятые части процента всей массы атома. Вообще, можно сказать, что масса атома практически вся сосредоточена в его ядре. Отсюда как следствие массовое число А изотопа и атомная масса элемента — величины, практически совпадающие между собой. Атомная же масса плеяды элементов — средняя величина из массовых чисел тех изотопов, которые составляют данную плеяду. Это основная причина того, что ато.мные массы полиизотопных элементов в большинстве случаев величины дробные. [c.15]


Смотреть страницы где упоминается термин Ядро атома массовое число: [c.312]    [c.218]    [c.56]    [c.9]    [c.5]    [c.58]    [c.26]    [c.536]    [c.470]    [c.31]   
Химия справочное руководство (1975) -- [ c.394 ]




ПОИСК





Смотрите так же термины и статьи:

Массовая

Массовое число

Массовое число ядра

Числа атомов

Ядра атомов



© 2025 chem21.info Реклама на сайте