Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций ионы Са на мышечное сокращение

    Активация адреналином мышечной гликогенфосфорилазы происходит иначе, так как распад гликогена в скелетных мышцах стимулируется мышечными сокращениями (рис. 6.13). Киназа фосфорилазы (Са "-зависимая) активируется при мышечной работе под влиянием нервного импульса, так как в саркоплазме в этом случае возрастает концентрация ионов кальция. Это еще один механизм ускорения распада гликогена в мышце. Результатом дей- [c.145]


    Кальциевый мембранный электрод оказался ценным инструментом для физиологических исследований, поскольку ион кальция играет важную роль в нервной проводимости, формировании костей, мышечном сокращении, сокращениях мышц сердца и функции проводимости систолы сердца и почечных канальцев. Интересно, что некоторые из этих процессов в большей степени зависят от активности, чем от концентрации ионов кальция активность и есть параметр, измеряемый электродом. [c.436]

    Тропонин и тропомиозин опосредуют регуляторное действие ионов кальция на мышечное сокращение [c.269]

    Скелеты позвоночных, раковины моллюсков и т. д. построены в основном из солей кальция. Ионы Са " играют важнейшую роль в механохимических процессах (мышечное сокращение, [c.215]

    Первым из этих белков был открыт тропонин С в клетках скелетных мышц роль его в мышечном сокращении обсуждалась в гл. 11 (разд. 11.1.12). Другой, близко родственный ему кальций-связывающий белок-кальмодулин - обнаружен во всех до сих пор изученных клетках животных и растений. Типичная животная клетка содержит более 10 молекул кальмодулина, что может составлять до 1% всего клеточного белка. Кальмодулин функционирует как многоцелевой внутриклеточный рецептор для Са . участвующий в большинстве процессов, регулируемых этими ионами. Это очень консервативный одиночный полипептид примерно из 150 аминокислот, имеющий четыре высокоаффинных Са -связывающих центра при связывании кальция он претерпевает большие конформационные изменения (рис. 12-29). [c.375]

    Кальций принимает активное участие в процессах нервно-мышечной возбудимости (как антагонист ионов К"), мышечного сокращения, свертывания крови, образует структурную основу костного скелета, влияет на проницаемость клеточных мембран и т.д. [c.583]

    Какова роль ацетилхолина, ионов кальция, тропонина и тропомиозина в мышечном сокращении и расслаблении  [c.305]

    Из щелочно-земельных металлов в биологических системах повсеместно распространены магний и кальций. Многие эфиры и ангидриды фосфорной кислоты функционируют в виде магниевых солей. Концентрация ионов магния в клетках имеет исключительно важное значение для поддержания целостности и функционирования рибосом, т.е. для синтеза белков. Кроме того, магний входит в состав хлорофилла — основного пигмента зеленых растений, непосредственно поглощающего кванты видимого света для использования их энергии при фотосинтезе. Ионы кальция принимают участие в регуляции ряда важных клеточных процессов, в том числе мышечного сокращения и других двигательных функций. Кроме того, нерастворимые соли кальция участвуют в формировании опорных структур фосфат кальция — в формировании костей, карбонат кальция — в образовании раковин моллюсков. [c.65]


    Расслабление мышцы (релаксация) происходит после прекращения поступления двигательного нервного импульса. При этом проницаемость стенки цистерн саркоплазматического ретикулума уменьшается, и ионы кальция под действием кальциевого насоса, использующего энергию АТФ, уходят в цистерны. Их концентрация в саркоплазме быстро снижается до исходного уровня. Снижение концентрации кальция в саркоплазме вызывает изменение конформации тропонина, что приводит к фиксации молекул тропомиозина в определенных участках актиновых нитей и делает невозможным образование поперечных мостиков между толстыми и тонкими нитями. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное положение. [c.133]

    В процессе мышечного сокращения освобождаются не только ионы калия, но также ионы кальция [131] и фосфата [132]. Так как при этом в пептидных цепях также появляются новые положительно и отрицательно заряженные группы, то взаимная их [c.191]

    К основным структурным внутримышечным факторам, лимитирующим алактатную работоспособность, можно отнести количество миофибрилл, от которых зависит сила и быстрота мышечного сокращения, и развитие саркоплазматической сети, содержащей ионы кальция и участвующей в проведении нервного импульса внутри мышечной клетки. [c.193]

    Ионы играют важную роль в организме человека. Образование костей и зубов зависит от наличия ионов кальция, магния, фосфат- и карбо-нат-ионов в соответствующих соотношениях. Ионы в жидкостях организма создают осмотическое давление, которое обусловливает прохождение питательных веществ и продуктов жизнедеятельности в клетки тканей и из них. Переваривание пищи регулируется отношением водородных и гидроксильных ионов в желудочном и кишечном соках. Ионы кальция необходимы для свертывания крови и образования коагулятов молока в желудке ионы железа существенны для образования гемоглобина (красного пигмента крови). Мышечные сокращения и передача нервных импульсов также осуществляются при наличии некоторых ионов. [c.155]

    В особом положении находятся мышечные клетки. Для мышечного сокращения необходимо много ионов кальция, и его надо доставлять к каждой из белковых [c.104]

    Синхронизация гликогенолиза и мышечного сокращения активация киназы фосфорилазы ионами кальция, кальмодулином и тропонином [c.66]

    И структурные белки. Несомненно, что их роль не только механическая. Доказано, что структурным белкам присущи и каталитические функции. Эти функции особенно ярко проявляются у мышечного сократительного белка миозина. Исследования В. В. Эн-гельгардта и Н. А. Любимовой показали, что миозин ускоряет взаимодействие с водой (т. е. гидролиз) важнейшего аккумулятора энергии — аденозинтрифосфорной кислоты (АТФ). При этом получается аденозиндифосфорная кислота и фосфат. Энергия реакции используется мышцей, во время работы которой нити белка миозина сокращаются. Следовательно, этот белок выполняет двойную нагрузку он регулирует освобождение энергии и он же потребляет энергию, сокращаясь в процессе работы мышцы. Молекула миозина представляет собой длинную цепь — ее длина равна примерно 160 нм, а молекулярная масса достигает 600000, Кроме миозина, известны и другие мышечные белки (актин, тро-помиозин), Для того чтобы эти белки могли осуществлять обратимое сокращение, необходимо присутствие катионов металлов, вообще активно поглощаемых мышечными белками. Для работы мышцы требуются ионы калия, кальция, магния, нужен также запас фосфатов, используемых для синтеза АТФ, Связывание ионов металлов и водорода с ионными группами белков сильно влияет на взаимодействие участков цепи и приводит к изменению ее длины. Однако механизм мышечного сокращения более сложен и, по-видимому, связан с особым расположением нитей миозина и актина в мышце, позволяющих частицам актина при работе мышцы скользить вдоль нитей миозина. Из числа растворимых белков особенно важны альбумины и глобулины. [c.62]

    Приведенные данные показывают, что появление фосфорилазы а является важным фактором в синхронизации гликогенолиза и мышечного сокращения. Они свидетельствуют также о том, что в покоящейся мышце киназа фосфорилазы неактивна и превращается в активную форму при мышечном сокращении. Как было установлено, один и тот же сигнал вызывает сокращение и активирует киназу фосфорилазы этим сигналом служат ионы кальция (рис. 4.5). [c.68]

    Возбуждение мышечного волокна связано с переносом ионов натрия и калия через сарколемму. Природа потенциала действия здесь такая же, как в аксоне, за исключением того, что основную роль в данном случае играют ионы кальция. Деполяризация сарколеммы сопровождается понижением разности потенциалов между поперечными канальцами и соседними участками саркоплазмы, что приводит к локальному изменению мембранного потенциала саркоплазматического ретикулума. Концентрация кальция в саркоплазме, в состоянии покоя не превышающая 10" моль/л, после возбуждения увеличивается до моль/л. Такое резкое увеличение концентрации кальция активирует миофибриллы и вызывает их сокращение. Миофибриллы состоят из параллельно расположенных тонких нитей из белка актина и толстых нитей из другого белка, миозина. Движение этих нитей относительно друг друга, лежащее в основе сокращения мышц, требует расхода энергии, которая обеспечивается гидролизом АТР. Это движение подавляется белком тропонином, который находится между [c.241]


    Хорошо известно, что ионы кальция поступают в цитоплазму в ответ на нервную стимуляцию и что именно они вызывают различные ответные реакции в организме, такие, например, как мышечное сокращение. Весьма вероятно, что в результате присоединения ионов Са- к специфическим центрам связывания (как это имеет место, например, в каль-ций-связывающем белке карпа) в молекуле происходят конформационные изменения, инициирующие биологические ответные реакции. Кальций-связывающий белок содержит интересную систему внутренних полярных групп, связанных между собой специфическим образом с помощью водородных связей (рис. 4-5, ). Присоединение ионов кальция может вызывать перестройку этих внутренних связей (гл. 2, разд. Б.7) и изменять тем самым характер взаимодействия этого белка (функция которого точно не известна) с другим белком (ср., например, с действием тропонина С, разд. Е.1). В других кальций-связывающих центрах в белках содержатся остатки у-карбоксиглутаминовой кислоты, способной образовывать хелатные комплексы (дополнение 10-Г). [c.270]

    В настоящее время наблюдается мощный интеллектуальный подъем в неорганической химии, который сильнее всего затронул те ее области, которые лежат на стыке с соседними дисциплинами химию металлоорганических и бионеорганических соединений, химию твердого тела, биогеохимию и др. Возрастает, в частности, уверенность ученых в том, что неорганические элементы играют важную роль в живых системах. Живые существа вовсе не являются чисто органическими. Они весьма чувствительны к ионам металлов почти всей Периодической системы Д.И. Менделеева. Некоторые ионы играют важнейшую роль в таких жизненно важных процессах, как связывание и транспорт кислорода (железо в гемоглобине), поглощение и конверсия солнечной энергии (магний в хлорофилле, марганец в фотосистеме II, железо в ферродоксине, медь во фта-лоцианине), передача электрических импульсов между клетками (кальций, калий в нервных клетках), мышечное сокращение (кальций), ферментативный катализ (кобальт в витамине В12). Это привело к взрыву творческой активности ученых в области неорганической химии биосистем. Мы начинаем изучать строение ближайшего и дальнего окружения атомов металлов в биосистемах и учимся понимать, как это окружение позволяет атому металла с такой высокой чувствительностью реагировать на изменение pH, давление кислорода, присутствие доноров или акцепторов электронов. [c.158]

    Так же как и другие киназы, протеинкиназа и киназа фосфорилазы требуют для своей активности ионы магния. Кроме того, киназа фосфорилазы в своей неактивной форме аллостерически активируется ионами кальция. Напомним, что инициирование процесса мышечного сокращения вызывается нервными импульсами, которые стимулируют освобождение ионов кальция из пузырьков эндоплазматического ретикулума. Таким образом, ионы кальция не только включают процесс мышечного сокращения, но и ускоряют процесс фосфорилирования фосфорилазы Ь в фосфорилазу а. Теперь некоторые этапы каскадного механизма становятся яснее. Оказывается, что наиболее важная стадия, катализируемая киназой фосфорилазы, нужна для того, чтобы дать возможность реализоваться следующей стадии, на которую оказывают специфическое влияние ионы кальция, освобождающиеся при нервном возбуждении. С другой стороны, возможность активации киназы фосфорилазы в результате фосфорилирования протеинкиназой делает процесс чувствительным к гормональной стимуляции. [c.509]

    Выяснено, что паратгормон участвует в регуляции концентрации катионов кальция и связанных с ними анионов фосфорной кислоты в крови. Как известно, концентрация кальция в сыворотке крови относится к химическим константам, суточные колебания ее не превышают 3-5% (в норме 2,2-2,6 ммоль/л). Биологически активной формой считается ионизированный кальций, концентрация его колеблется в пределах 1,1-1,3 ммоль/л. Ионы кальция оказались эссенциальными факторами, не заменимыми другими катионами для ряда жизненно важных физиологических процессов мышечное сокращение, нервно-мышечное возбуждение, свертывание крови, проницаемость клеточных мембран, актгшность ряда ферментов и т.д. Поэтому любые измененния этих процессов, обусловленные длительным недостатком кальция в пище или нарушением его всасывания в кишечнике, приводят к усилению синтеза паратгормона, который способствует вымыванию солей кальция (в виде цитратов и фосфатов) из костной ткани и соответственно к деструкцгп минеральных и органических компонентов костей. [c.263]

    Ионы кальция осуществляют контроль за процессами генерации потенциалов действия и секреции нейромедиатора из нервного окончания, а также являются связывающим звеном между нервным импульсом и мышечным сокращением. a2+,Mg2+-ATPasbi в мембранах митохондрии и саркоплазматического ретикулума регулируют концентрацию кальция в цитоплазме. Система транспорта была выделена, биохимически охарактеризована и функционально идентифицирована при встраивании в искусственную липидную мембрану (реконструкция). [c.185]

    Третий вопрос связан с двумя предыдущими и касается роли эндоплазматического ретикулухМа в транспорте. Он, вероятно, образует систему непрерывных каналов вдоль всего аксона, поскольку радиоактивные молекулы в процессе транспорта концентрируются здесь особенно быстро. Эти каналы могут составить идеальную транспортную систему, но, даже если бы имелось доказательство их существования, оно само по себе не проясняет природу механизма транспорта. Как они взаимодействуют с микротрубочками, микро- и нейрофиламентами и актином Здесь мы не имеем возможности обсуждать разнообразные выдвигаемые гипотезы. Общее мнение заключается в том, что транспортирующая активность зависит от ионов кальция и обусловлена системой актин — миозин, работа которой подобна механизму мышечного сокращения. По-видимому, наиболее вероятна модель, предложенная Дрозом — сторонником ретикулярной гипотезы (рис. 10.4), поскольку она учитывает большую часть известных фактов [3]. [c.309]

    При кормлении животных пищей, лишенной солей магния, у них развивается расстройство сердечной деятельности, животные погибают в результате частых судорог. Введение в кровь больших количеств солей магния вызывает у животных депрессию и сон (магнезиальный сон). Тормозящее действие ионов магния на функции нервной системы устраняется путем введения в кровь соли кальция. Магний является внутриклеточным катионом. Катион Mg + находится в митохондриях и является вал<нейшим активатором окислительного фосфорилирования. Всегда содержится в микросомах в связанном с белками состоянии и в других частях клетки. Магний необходим при мышечном сокращении для осуществления ряда ферментативных реакций. Он участвует в соединении актина с миозином и образует активный магний-белковый комплекс, участвующий в процессах сокращения. Магний активирует распад макроэргических связей АТФ, освобождающих энергию для процесса мышечного сокращения. Ионы магния активируют ряд ферментов фосфотазу, енолазу, а также пептидазу, карбоксилазу, кетокислоту, лецитиназу. У лак-тирующих коров иногда при зеленом корме развивается заболевание гипомагнезия, при котором количество магния снижается в 5—6 раз, а выделение его с мочой прекращается. При добавлении к корму магниевых солей заболевание прекращается. Причина заболевания гипомагнезией еще недостаточно изучена, по-видимому, нарушается усвоение магнезиальных соединений в пищеварительном тракте. [c.420]

    Было выяснено, что соли натрия только тогда способствуют мышечному сокращению, когда в самой мышце есть достаточное количество ионов Са. При длительном пребывании мышцы в растворе чистого Na l соли кальция из мышцы вымываются и в овази с этим прекращаются ее ритмические сокращения. Подобный же результат получается, если кальций имеется в избытке. В частности, если к изотоническому раствору Na l прибавить хорошо диссоциирующей соли кальция (например, СаСЬ), сокращения мышцы прекращаются. Лёб показал, что мышца тогда способна возбуждаться, когда имеется определенное соотношение между одновалентными и двухвалентными катионами. [c.139]

    Регуляция сокращения и расслабления мыщц. Сокращение любых мышц происходит по общему механизму, описанному ранее. Мышечные волокна разных органов могут обладать различными молекулярными механизмами регуляции сокращения и расслабления, однако всегда ключевая регуляторная роль принадлежит ионам Са . Установлено, что миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться в его присутствии лишь при наличии в среде определенных концентраций ионов кальция . Наибольшая сократительная активность наблюдается при концентрации ионов Са около 10 10 М. При понижении концентрации до 10 М или ниже мышечные волокна теряют способность к укорочению и развитию напряжения в присутствии АТФ. [c.657]

    Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собой волну повышенной мембранной проницаемости, распространяющуюся по нервному волокну. Эта волна повышенной проницаемости передается через нерв-но-мышечный синапс на Т-систему саркоплазматической сети и в конечном счете достигает цистерн, содержащих ионы кальция в большой концентрации. В результате значительного повышения проницаемости стенки цистерн (это тоже мембрана ) ионы кальция выходят из цистерн и их концентрация в саркоплазме за очень короткое время (около 3 мс) возрастает примерно в 1000 раз. Ионы кальция, находясь в высокой концентрации, присоединяются к белку тонких нитей - тропонину - и меняют его пространственную форму (конформацию). Изменение конформации тропонина, в свою очередь, приводит к тому, что молекулы тропомиозина смещаются вдоль желобка фибриллярного актина, составляющего основу тонких нитей, и освобождают тот участок актиновых молекул, который предназначен для связывания с миозиновыми головками. В результате этого между миозином и актином (т. е. между толстыми и тонкими нитями) возникает поперечный мостик, расположенный под углом 90°. Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина (около 300 в каждую), то между мышечными нитями образуется довольно большое количество поперечных мостиков, или спаек. На электронной микрофотографии (рис. 15) хорошо видно, что между толстыми и тонкими нитями имеется большое количество поперечно расположенных мостиков. [c.131]

    Ряд белков (эффекторов) осуществляет свои функции в результате фосфорилирования цАМФ-зависимыми протеинкиназами. Молекула протеинкиназы состоит из двух субъединиц регуляторной и каталитической. цАМФ связывается с регуляторной субъединицей, после чего происходят отделение каталитической субъединицы и фосфорилирование соответствующего белка. С другой стороны, цАМФ часто используется в клетке для активации другого вторичного мессенджера — ионов Са +. Так, адреналин приводит к повыщению концентрации в клетке миокарда цАМФ, которая открывает кальциевый канал, а вход в миоцит Са-+ усиливает сокращение сердечной мыщцы. Аналогичный механизм обнаружен в ряде мыщечных клеток, в секреторных и нервных клетках. Роль кальция как внутриклеточного регулятора была описана в 1883 г. английским физиологом и медиком С. Рингером. Он обнаружил, что Са + необходим для сокращения мыщечной ткани. В настоящее время Са + признан универсальным вторичным мессенджером, участвующим практически во всех регуляторных процессах — от мышечного сокращения и нервного проведения до передачи митогенного стимула в клетках иммунной системы. Низкая концентрация в клетке Са + поддерживается низкой проницаемостью биомембран для этого иона и постоянной работой Са-АТФаз (см. гл. III. 2.2). Резкое изменение в клетке концентрации Са + происходит за счет специальных кальциевых каналов, которые в ответ на соответствующий стимул (деполяризация, изменение концентрации Са + и т. д., см. гл. III.3), открываются и высвобождают Са + из внеклеточного пространства или из внутриклеточных депо, которыми служат цистерны эндоплазматического ретикулума и иногда мембраны митохондрий. Резко увеличить проницаемость мембран для Са + в ответ на внешний стимул может не только цАМФ (по-видимому, за счет фосфолирирования определенной субъединицы кальциевого канала), но и гидролиз мембранных липидов (рис. 51). [c.147]

    Предполагается, что тропомиозин и тропонин осуществляют Са +-зависимую регуляцию мышечного сокращения стерическим препятствованием взаимным контактам актина и миозина. При повышении концентрации ионов Са молекулы тропомиозина изменяют свое положение, быть может, благодаря изменению формы связанных с ним молекул тропонина, прежде всего тропонина С. В отсутствие Са тропомиозин, тропонин Т и тропонин I образуют комплекс, препятствующий взаимодействию актина с миозином. При появлении ионов кальция тропонин С связывает четыре иона Са + и в таком состоянии снимает блокаду и дает возможность головкам миозина вступить во взаимодействие с актином [484]. [c.129]

    Связь мьшгечного сокращения с изменениями концентрации Са , а значит, и с двигательными нервными импульсами всецело обусловлена функцией особых вспомогательных белков, тесно ассоциированных с актиновыми филаментами. Если миозин смешать с чистым актином в пробирке, миозиновая АТРаза активируется независимо от того, имеются ли в среде ионы кальция. Между тем в интактной миофибрилле АТРазная активность миозина весьма чувствительна к концентрации этих ионов. Это различие связано с тем, что регуляция мышечного сокращения ионами Са осуществляется при участии вспомогательных белков, которых нет в искусственно реконструированных филаментах (рис. 10-19). [c.85]

    Как отмечалось, инициация мышечного сокращения ияи генерация различных форм немышечной подвижности так или иначе связаны с изменением концентрации кальция внутри клетки. В состоянии покоя уровень ионов кальция внутри клетки составляет 10 —10 М, а после стимуляции редко возрастает выше М. Мы не приводим анализ механизмов, обеспечивающих изменение концентрации кальция внутри клетки. Отметим только, что в принципе существует два источника повышения концентрации кальция. Кальций может входить в клетку снаружи, где его концентрация составляет 10 —10 М. Этот вход обеспечивается путем открывания специальных Са -каналов, расположенных в наружной мембране. Кальций может освобождаться и из внутриклеточных резервуаров. Внутриклеточным хранилищем кальция является саркоплазматический (эндоплазматический) ретикулум. Чтобы стал возможным этот процесс, надо обратимо изменить проницаемость мембран ретикулума для кальция и выпустить кальций из депо внутрь клетки. После окончания стимуляции необходимо восстановить проницаемость наружных или внутриклеточных мембран для кальция и либо закачать кальций обратно внутрь ретикулума, либо вывести его из клетки наружу. Соотношение вошедшего внутрь клетки внешнего и внутреннего кальция различно в разных органах и тканях. Также довольно существенно различаютхм механизмы, обеспечивающие выброс кальция из депо или его вход через наружную мембрану. Тем не менее конечным результатом является довольно быстрое и сравнительно резкое увеличение концентрации кальция внутри клетки. [c.209]

    Характерная функция ионов Са + у живых существ состоит в способности активировать различные метаболические процессы. Это происходит при резких -изменениях проницаемости плазматических мембран или мембран эндоплазматического ретикулума, в результате которых становится возможной диффузия ионов Са + в цитоплазму. Так, например, при сокращении мышцы в результате освобождения ионов Са + из эндоплазматич0окого ретикулума его концентрация увеличивается приблизительно от 0,1 до 10 мкМ . Связывание ионов Са + с тропонином С инициирует сокращение (гл. 4, разд. Е.1) . Мембраны эндоплазматического ретикулума мышечного волокна содержат большое количество белка кальциевого пасоса, а также ряд белков, связывающих кальций (гл. 4, разд. В.8.в) . Один из Са +нсвязывающих белков мышцы кролика, кальсеквестрин (мол. вес 46 500), способен связывать до 43 молей Са + на моль белка"  [c.373]

    Таким образом, гипотеза о переносе фосфатной группы с АТФ не белок и последующем ее гидролизе в фазе расслабления соответствует фактам. В том, что измерение скорости изотопного обмена АТФ и АДФ является характеристикой реальной реакции (1), мы убеждаемся еще и по такому признаку. Сокращение отмытого мышечного волокна или мышечного белка требует обязательного присутствия АТФ и ионов магния (10" —10" М). Если заменить магний на кальций, то сокращение актомиозина не происходит. Оказывается, что и реакция изотопного обмена, исследованная Ульбрехтом, требует обязательно присутствия магния и полностью тормозится при замене магния на кальций (вследствие чего эта реакция не была найдена ранее Кошландом). Что касается реакции минерализации фосфата (аденозинтрифосфатазной реакции), то она идет еще активнее при замене магния на кальций. В этом случае АТФ расщепляется, но вхолостую. Вся энергия гидролиза АТФ переходит в теплоту. Ясно, что в этом случае балансовая реакция остается той же самой, но механизм ее изменяется, она не идет через стадию (1), которая необходима при получении механической работы. [c.190]

    Незначительная часть калыщя и магния находится в плазме крови и внутри клеток в форме ионов - Са , Ионы кальщ1я, находящиеся в плазме крови, являются обязательными участниками свертывания крови, а содержащиеся внутри мыщечных клеток управляют процессами сокращения и расслабления мышцы. Ионы кальция и магния являются также активаторами некоторых ферментов. В частности, эти ионы активируют креатинкиназу - важнейший фермент, участвующий в обеспечении энергией мышечной деятельности. [c.87]

    Физические волокна (синонимы белые, быстрые, Р-волокна ) имеют много миофибрилл, хорошо развитую саркоплазматическую сеть (много цистерн с ионами кальция ), к ним подходит много нервных окончаний. В них хорошо развиты коллагеновые волокна, что способствует их быстрому расслаблению. В их саркоплазме значительны концентрации креатинфосфата и гликогена, высока активность креатинкиназы и ферментов гликолиза. Относительное количество митохондрий в белых волокнах (по сравнению с красными) значительно меньше, содержание миоглобина в них низкое, поэтому они имеют бледную окраску. Обеспечение энергией белых мышечных волокон осуществляется за счет креатинфосфатной реакции и гликолиза. Сочетание анаэробных путей ресинтеза АТФ с большим количеством миофибрилл позволяет волокнам данного типа развивать высокую скорость и силу сокращения. Однако вследствие быстрого исчерпания запасов креатинфосфата и гликогена время работы этих волокон ограничено. [c.194]


Смотреть страницы где упоминается термин Кальций ионы Са на мышечное сокращение: [c.459]    [c.124]    [c.86]    [c.94]    [c.94]    [c.193]    [c.146]    [c.280]    [c.762]    [c.333]    [c.727]    [c.380]    [c.106]   
Молекулярная биология клетки Том5 (1987) -- [ c.85 , c.86 ]




ПОИСК







© 2025 chem21.info Реклама на сайте