Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические парафинах

    Промытый комплекс из центрифуги 9 и частично из центрифуги 15 ступени III поступает в реактор разложения комплекса 12, куда из центрифуг 15 отводится некоторое количество раствора парафина в бензине — рециркулят II. В реакторе 12, идентичном по конструкции реактору И, при механическом перемешивании комплекс разлагается. Для разложения комплекса в рубашку реактора 12 вводится глухой водяной пар. [c.91]


    Для оценки качества парафинов, а также церезинов и вазелинов применяют общие методы (определение содержания воды, механических примесей, зольности, цвета и др.) и специальные методы, характеризующие температуру плавления, содержание масла и др. Специфика этих методов, характерная для каждого продукта, изложена в стандартах на эти продукты. [c.232]

    Пробу испытуемого парафина расплавляют на водяной бане и при наличии влаги или механических примесей фильтруют при 60—70°С через бумажный фильтр. [c.453]

    Вода с растворенными в ней солями находится в извлеченной из пласта нефти в виде мелких капель размером от 1,6 до 250 мкм. Капли соленой воды сорбируют на поверхности естественные эмульгаторы, содержащиеся в нефти, — нефтяные кислоты, асфальтено-смолистые вещества, микрокристаллы парафинов, механические примеси. А это затрудняет слияние и укрупнение капель. В настоящее время подготовка нефтей к переработке проводится в два этапа на промысле и непосредственно на нефтеперерабатывающем предприятии. [c.11]

    Оптимальные условия для развития СВБ, представляющих собой микроорганизмы размером 0,1—3 мкм температура около 30—40 С и слабоминерализованная нейтральная среда с сульфатами. Заражение пластовых систем микроорганизмами происходит обычно при закачке поверхностных вод, содержащих сульфаты и микрофлору, СВБ могут зародиться и в нефтепромысловых аппаратах, трубах и резервуарах, например под осадками парафина, механических примесей, продуктов коррозии и загустевшей нефти. [c.209]

    При температуре перехода кристаллов нормальных парафиновых углеводородов из одной модификации в другую резко изменяются их теплофизические, оптические, физико-механические и некоторые другие свойства, что имеет большое значение с точки зрения применения этих углеводородов. Так, нефтяной парафин в твердом состоянии может существовать в двух аллотропных формах гексагональной и орторомбической [10]. Первая модификация существует при повышенных температурах вплоть до температуры плавления парафина и характеризуется волокнистым, рыхлым строением кристаллов, придающим продукту пластичность. Кристаллы парафина, имеющие гексагональную структуру, слипаются при сжатии. Другая модификация — орторомбическая, стабильная при пониженной температуре, сохраняется до температуры фазового перехода и характеризуется пластинчатым строением кристаллов. Этой модификации присущи свойства кристаллического тела, обладающего твердостью, хрупкостью и [c.121]


    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    Для удаления уже накопившихся отложений прибегают к трем основным способам очистки механическому удалению парафина с внутренней поверхности труб специальными скребками, растворению парафина различными растворителями, тепловой обработке трубопроводов нагретыми агентами. [c.43]

    Нефтегазовая смесь по нефтегазосборному коллектору через задвижки 19 и 14 поступает в гидроциклонную головку 12. Из гидроциклона выделившиеся нефть и газ с оставшимся растворенным газом попадают в верхнюю емкость сепаратора 11, где происходит дополнительная сепарация газа. Далее нефть поступает в нижнюю емкость, откуда через задвижку 15 попадает в фильтр 18, где очищается от механических примесей и парафина. Затем нефть через задвижку 17, счетчик для измерения общего количества нефти, поступавшей на установку 23, регулирующий клапан 26 и задвижку 6 поступает в нефтесборный коллектор. [c.74]

    Наличие нефтепродуктов в конденсате объясняется не механическим уносом газойля, а продуктами его перегонки в контактном испарителе, близкими по составу к дизельному топливу (Н. к.— 210° С, 30% — 271° С, 50% —282° С, 84% — 300° С, 96% - 325° С). При использовании в качестве теплоносителя парафина значительно уменьшается унос последнего с паром. Так, при давлении до 0,4 МПа унос не превышает 1 кг/м . [c.48]

    При коксовании в тех же условиях этого высокополимерного углеводорода, содержащего ароматические группы, было получено 16,2% кокса истинной плотностью 2,10 г см . По текстуре, механическим и электрическим свойствам полученный кокс был практически одинаковым с коксом из смол пиролиза. В дистилляте коксования не было обнаружено твердых парафинов. Коксование полистирольной смолы проходило по сложному механизму параллельно-последовательных реакций с образованием продукта глубокого уплотнения — кокса. [c.47]

    Из прямогонного сырья получается кокс с более волокнистой текстурой, меньшей механической прочностью и большей упругостью, чем из крекинг-остатка той же нефти. Поэтому для получения кокса с лучшими механическими свойствами в первые годы освоения коксовых кубов в Грозном перешли от переработки прямогонного сырья к коксованию крекинг-остатка сначала грозненских парафинистых, а затем малгобекских и бакинских нефтей (парафино-ароматического и нафтено-парафинового оснований), дающих кокс менее упругий и с лучшими показателями по пластичности (больший А рел.)- [c.187]

    Для предотвращения отложений парафина и механических примесей резервуары оснащаются размывающими головками, кото- [c.496]

    В работе [28] приведены результаты исследования состава и строения поверхностно-активных веществ, присутствующих в стабилизаторах нефтяных эмульсий. Авторы делают вывод о том, что поверхностная активность стабилизаторов (эмульгаторов) нефтяных эмульсий определяется не только порфиринами, но и другими компонентами с полярными функциональными группами. Вместе с этими веществами на межфазной поверхности адсорбируются микрокристаллы парафина, церезина и высокодиспергированные механические примеси нефти. [c.30]

    При вакуумной перегонке тяжелых остатков высокопарафинис-тых нефтей, когда верхний погон является парафиновым дистиллятом с температурой застывания 38—43 °С, возможно отложение парафина н-а трубках конденсатора. Во избежание этого предлагается впрыскивать в трубу до конденсатора фракцию дизельного топлива 200—250 °С в качестве депрессирующего компонента в количестве 40—60% общего расхода нефтепродуктов до конденсатора. Легкие фракции приводят к выпадению парафинов в трубе до конденсатора, откуда их удаляют механически [81]. [c.199]

    Поступающее на нефтетехнологические установки нефтяное сырье значительно различается по физико-химическим константам углеводородному составу, плотности, вязкости, содержанию растворимых в нефтях минеральных солей, газа, серы, парафина, механических примесей и др. Кроме углерода и водорода, которые обычно составляют 95—97 вес. % (в том числе С —84—85 вес. %, И—12—14 вес. %), в нефти находится не менее 3—4 вес. % побочных элементов и соединений — кислорода, фосфора, серы, газа, воды и др. [c.23]


    К материалам, из которых изготовляют аппараты и оборудова-ниедля современных процессов первичной переработки нефти, предъявляют жесткие требования. Это обусловлено ростом производительности комбинированных установок, переработкой нефти с большим содержанием минеральных солей, серы, парафина и др., а также влиянием аппаратов, оборудования, механизмов, приборов контроля и автоматики на технологический режим отдельных узлов и показатели установки. По мере укрупнения установок абсолютный расход металла резко увеличивается, а удельный его расход заметно снижается. Наличие в нефтях минеральных солей, механических примесей, серы и сернистых соединений вызывает необходимость расходования значительных количеств дефицит-ны иметаллов. [c.164]

    Минеральное масло - это многокомпонентная система, застывание которой является сложным и многостадийным процессом, зависящим от взаимодействия отдельных компонентов, их взаимного растворения и др. В минеральном масле при понижении температуры в первую очередь зарождаются и растут кристаллы парафина. С появлением мелких кристаллов масло мутнеет и эта температура называется температурой помутнения loudpoint). В дальнейшем кристаллы парафина растут, соединяются, слипаются и в конечном итоге образуют кристаллический каркас, масло становится неподвижным, желеобразным. Таким образом, температура застывания фактически является температурой желеобразования. Между кристаллическим каркасом масло еще остается жидким и при встряхивании или перемешивании текучесть всей массы масла может частично восстановиться. Такой процесс затвердевания, как специфический процесс кристаллизации, зависит от скорости охлаждения и от термической и механической предыстории масла (низкотемпературного режима, интенсивности и продолжительности принудительного течения, в интервале времени до измерения температуры застывания). Поэтому при определении этой температуры требуется строгое соблюдение предписанной процедуры охлаждения и выдержки жидкости. [c.38]

    В ряде случаев частицы твердых перекисей покрывают тонким слоем осажденного из раствора парафина для снижения чувствительности к механическим воздействиям. Хорошее ингибирующее действие на процесс разложения перекисных производных оказывает диалкилфталат, который применяют в качестве разбавителя наиболее нестабильных перекисей. В качестве флегматизаторов перекисей могут применяться силиконовые жидкости, трнкрезил-фосфат, бензол, толуол, мономеры и др. [c.135]

    Нужно отметить, что сформировавшиеся кристаллы парафина волокнистой структуры при охлаждении их ниже температуры перехода, сохраняя в течение продолжительного времени внешнюю форму волокон, внутри тела волокон перекристаллизовы-ваются в пластинчатую структуру. При механическом разрушении таких псевдоволокнистых кристаллов они расчленяются на пластинки. Это привело некоторых авторов, например Каца [321 и др., к ошибочному выводу о том, что кристаллы парафина волокнистой формы якобы являются не монокристаллическими образованиями, а агрегатами пластинчатых кристаллов. Эта ошибка была следствием того, что волокнистая форма кристаллов парафина изучалась при температурных условиях (при комнатной температуре), при которых устойчивой являлась пластинчатая форма, что приводило к внутренней рекристаллизации изучавшихся кристаллов и влекло за собой неверные заключения. [c.64]

    V Разбавление и отбор масла от потенциала. От величины разбав-, ления сырья растворителем в большой мере зависят выход депарафинированного масла и полнота освобождения от масла выделен-, ного парафина. Это обусловливается тем, что удаляемый из рас-, твора осадок парафина всегда механически увлекает с собой значительную долю этого раствора. Количество раствора, удер- живаемого осадком парафина, зависит от условий фильтрации и. структуры осадка и составляет обычно 20—50% от массы осадка, а при центрифугировании и еще больше. Чем выше концентрация масла в растворе, пропитывающем осадок, тем большее коли-, чество его в этом осадке окажется. При повышении же разбавления сырья растворителем уменьшится концентрация масла во всем растворе и в той его части, которая остается в осадке-, парафина. Следовательно, повышение разбавления депарафинируемого сырья растворителем способствует повышению четкости, разделения его застывающих и низкозастываюцщх компонентов и несколько увеличивает выход депарафинированного масла. [c.101]

    Система порционной подачи растворителя была осуш ествлена на депарафинпзационных установках Новокуйбышевского НПЗ А. Е. Альтшуллером, Е. М. Варшавером и Г. И. Ястребовым совместно с М. Г. Митрофановым и дала положительный эффект [8]. Лабораторные исследования системы порционной подачи растворителя применительно к условиям депарафинизационных установок восточных заводов выполнены во ВНИИ НП [9]. На процессе кристаллизации парафина весьма отрицательно сказывается присутствие в сырье механических загрязнений и коллоидных примесей. Они вызывают появление большого числа центров кристаллизации парафина. Проведенные нами исследования и наблюдения показали, что удаление этих примесей и загрязнений значительно улучшает кристаллическую структуру продуктов и повышает их фильтруемость. Примеси можно удалять отстоем, скоростным центрифугированием, электроосаждением, тонкой фильтрацией и другими средствами. [c.116]

    Принцип процесса. Эмульсионное обезмасливание гачей основано на способности парафина, выкристаллизовывающегося из гача в интервале между температурами плавления и перехода (в котором парафин находится в пластичном волокнистом аллотропном состоянии), комковаться при механическом перемешивании, собираясь в крупные комки, и отделяться таким образом от жидкой фазы — оттека. Содержание растворенного парафина в части гача, остающейся в жидком состоянии, будет отвечать растворимости парафина в масле при данной температуре. Выделяющиеся из гача комки не являются чистым парафином, а содержат существенное количество масла. Эти комки концентрата парафина легко могут быть отделены от оттека простейшей фильтрацией через сетку или обработкой на фильтрующей центрифуге. [c.229]

    Экстрактор 5 представляет сосуд, оборудованный механической мешалкой. При помощи мешалки гранулы сырья поддерживаются в массе находящегося в экстракторе растворителя во взвешенном состоянии, способствующем диффундированию масла из гранул в растворитель. Из экстрактора взвесь гранул в значительной мере уже обезмасленного парафина в растворителе перекачивается насосом в отстойник 6. Отстойник 6 (а также и 5) — вертикальная емкость с герметичной конической крышей. В отстойнике 6 взвесь гранул в растворителе разделяется гранулы всплывают вверх, собираются под конической крышей отстойника и поступают в экстрактор II ступени 7. Отстоявшийся же от гранул экстракт откачивают из нижней части отстойника 6 на регенерацию растворителя. [c.232]

    В своей ранней работе по дегидроциклизацпи парафинов Гроссе, Моррель и Маттокс [15] исследовали применение катализаторов окись хрома на окиси алюминия, а также смеси окисей хрома, ванадия и молибдена на окиси алюминия. Было установлено, что катализаторы, осан ден-ные на пористом носителе, действуют значительно дольше вследствие большей механической прочности при регенерации. [c.168]

    В настоящей главе рассматриваются то химические свойства парафинов и циклопарафинов, которые пс вошли в предыдущие главы. В фи-зиологич( ском отношении парафины и циклопарафины, как правило, инертны и не оказывают раздражающего действия. Циклопропан применялся как анестезирующее вещество, концентрация же пропана, необходимая для оказания анестезирующего действия, слишком велика, чтобы его можно было использовать [9]. У рабочих, имеющих дело с парафином в процессе его получения, иногда развивается определенная форма рака, которая рассматривалась как профессиональное заболевание, одпако в настоящее время известно, что прямогонные и особенно крекинговые смазочные масла содержат небольшие количества веществ, которые раздражают кожу и являются канцерогенными [3]. Это справедливо также и в отношении высококипящих масел, получающихся в качестве побочного, продукта при каталитическом крекинге. Канцерогенное действие приписывается некоторым ароматическим углеводородам, содержащимся в этих маслах [23а]. Мягкий парафин, плавящийся приблизительно около 45°, широко применяется как защитное покрытие при лечении тяжелых ожогов [81]. На отсутствие токсического и раздражающего действия тщательно очищенного американского белого медицинского масла указывает широкое применение его в качестве механического слабительного средства. При производстве белого медицинского масла содержащие ароматические кольца углеводороды удаляются путем сульфирования крепкой дымящей серной кислотой. Непредельность таких масел также практически равна нулю (йодные числа, определенные по методу Хэнаса, меньше 1,0). [c.88]

    Парафиновый гач, отделенный на прессах, расплавляется и снова отверждается. На этой стадии образуется хрупкая при обычной температуре твердая масса иглоподобных кристаллов, содержащая 25—50% жидкого масла и примерно равные количества высоко- и низконлавких парафинов. Она заметно тиксотронна и может быть превращена в жидкость, из которой почти все масло может быть удалено механически [65]. [c.523]

    Бутылки для молока обычно покрывают толстым слоем парафина, так как кроме водоотталкивания требуется также механическая прочность, а упаковка для замороженных продуктов обычно пропитывается более тш ательно. Кристаллический парафин составляет основную массу продукта, используемого для покрытия бумаги, но в настояш ее время широко используется смешение его с церезином и даже с другими добавками, такими как полиэтилен для получения желаемых свойств. Например, обычный парафин слишком хрупок при низких температурах, поэтому для придачи гибкости к нему примешивают мягкий церезин, получая продукт, пригодный для изготовления тары для замороженных продуктов. [c.531]

    Нашример, для бензина с верхней границей кипения 180° С, благодаря некоторы м механическим улучшениям в конструкции мотора, можно поднять границу кипения до 215° и даже до 225°. Верхняя граница кипения газ-ойля меняется в зависимости от количества соде ржащегося в нем парафина у мазута — в зависимости от содер-ясания парафинов и асфальтенов. [c.14]

    Нефть, доставленная в лабораторию для исследования, оспайпяетвся на 10—20 час. для того, чтобы она приняла температуру окружающей среды. Затем приступают к анализу. В нефтях онределявдсй уД. вес, вода, механические примеси, температура застывания, зола и сера иногда также выход технических фракций, содержание смол, парафина, вязкость, вспышка и т. п. [c.19]

    Во втором случае понижение температуры рано шш поздно, нногда 1при механическом воздействии, начинает выдел)ять парафиЯ в кристаллической кюстоя-njH. Е)ще легче происходит это в третьем случае, когда масло насыщено парафином. Все дело состоит в том, что в отличие от других, близких по составу углеводородов, углеводороды парафина обладают ограниченной растворимост .го, при- [c.233]

    Еще в 1946 г. Наумовым [91 ], вероятно, впервые было строго доказано на примере реакции изомеризации окиси этилена, что механическая смесь двух компонентов (силикагеля и окиси алюминия) в условиях, исключающих их взаимодействие (температура 200° С), обладает значительно более высокой активностью, чем каждый из компонентов в отдельности. В 1958 г. метод механического смешивания платинированного угля с алюмосиликагелем был предложен для получения активных катализаторов гидродеалкили-рования [92]. В 1964 г. Никс и Вейз показали эффективность такого приема при проведении ароматизации парафинов на смеси алюмосиликатного и дегидрирующего платинового катализаторов [93]. В настоящее время полифункциональные катализаторы широко применяют в основном в процессах превращения углеводородов [94, 95]. Чтобы провести сложное превращение веществ, приходится иметь дело с многоступенчатым процессом, протекающим в виде серии последовательных и параллельных реакций. В этом случае часто недостаточно эффективно применять один катализатор, так как при этом ускоряется лишь одна ступень процесса. [c.47]

    Предварительно парафин расплавляют и фильтруют для от-де.1ения от механических примесей. Затем его помещают (50 г) в круглодонную колбу, снабженную хорошей механической мешалкой, капельной вороикой, термометром и дополнительным тубусом для отвода паров воды, и нагревают до 105—110° С. rifH этой температуре в колбу вносят постепенно из капельной [c.502]

    Есть сообщение об отстаивании комплекса-сырца от дизельного топлива в пульсац-ионном аппарате [88]. В исследованном интервале интенсивности (частота 150—200 мин , амплитуда 10— 20 мин) пульсация значительно увеличивает скорость расслоения суспензии, при этом изменение параметров пульсации существенно не влияет на ход процесса. Влияние пульсации объясняется, по-видимому, разрушением гелеобразной структуры взвеси комплекса в спирте при механическом (гидравлическом) воздействии на него. Динамика расслоения суспензии, оцененная по количеству ароматических углеводородов, остающихся в парафине после разложения отстоявшегося комплекса, представлена на рис. 104. Из этих данных следует, что при пульсационном расслоении четкость разделения, эквивалентная четкости в промышленном отстойнике, достигается за 15— 20 мин вместо 1,5 ч без пульсации. [c.247]

    Подобный механизм реализуется в рассматриваемых НДС. Наиболее явно правило фильности проявляется в смесях с крекинг-остатком повышение количества вторичных асфальтенов и парафино-нафтеновых углеводородов при снижении доли смол и ароматики в смеси приводит к увеличению межмолекулярного взаимодействия и размеров дисперсных частиц (рис. 1.20). Ослабление структурно-механического барьера - сольватного слоя при этом может приводить к коагуляции асфальтенов и их выпадению, что отмечалось нами ранее на примере смесей прямогонного дистиллята запад-но-сибирской нефти, содержащих более 50% крекинг-остатка. [c.29]

    Согласно наиболее распространенной гипотезе, кристаллизация твердых углеводородов из масла, приводящая к его застуднева-Пию, рассматривается как образование в системе парафин — масло пространственной сетки (или каркаса), которая, иммобилизуя жидкую фазу, препятствует ее движению. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов, где наблюдается разрыв пленок дисперсионной среды образовавшийся гель обладает определенной механической прочностью. Другая гипотеза связывает застудневание с возникновением сольватных оболочек жидкой фазы вокруг кристаллов парафина. Дисперсионная среда, иммобилизированная вокруг дисперсных частиц, значительно увеличивает их объем, что повышает внутреннее трение всей системы и понижает ее текучесть. Предполагают, что при сдвиге, обусловленном механическим воздействием, толщина сольватных оболочек уменьшается и гель может превращаться в золь. При понижении температуры масел развитие процесса ассоциации приводит к образованию мицелл, вызывающих застудневание системы независимо от того, выделяется твердая фаза или нет. Добавление депрессоров значительно снижает как статическое, так и динамическое предельное напряжение сдвига депрессоры задерживают появление аномальной вязкости, сдвигая начало образования структуры в область более низких температур. [c.151]

    В зависимости от природы нефти и типа деэмульгатора может оказаться целесообразной подача последнего в несколько точек технологической схемы. Кроме водорастворимых деэмульгаторов, в значительной степени переходящих в дренажную воду и требующих пополнения в последующих ступенях по мере их вымывания водой, имеются и нефти, для которых более рациональной может быть подача деэмульгатора в несколько точек технологической схемы, независимо от того, является деэмульгатор водо- или нефтерастворимым. Это объясняется тем, что часть поданного деэмульгатора адсорбируется на диспергированных в нефти твердых частицах и тем самым снижается его деэмульгирующая активность. Поэтому, кроме подачи деэмульгатора до или после сырьевого насоса, для некоторых нефтей, особенно с высоким содержанием парафина, смол или механических примесей, целесообразна дополнительная подача деэмульгатора перед электродегидраторами, которая может превьппать первую подачу в два раза. Иногда целесообразно применять деэмульгатор и в самом злектродегидраторе. В этом случае его вводят в зону между нефтью и водой для разрушения промежуточного слоя змульсии. [c.79]


Смотреть страницы где упоминается термин Механические парафинах: [c.406]    [c.72]    [c.8]    [c.228]    [c.492]    [c.83]    [c.234]    [c.111]    [c.111]    [c.185]    [c.504]    [c.90]    [c.26]    [c.130]   
Товарные нефтепродукты (1978) -- [ c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Механические примеси в парафинах



© 2025 chem21.info Реклама на сайте