Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кокс нефтяной, получение и свойства

    Получение нефтяного кокса, отвечающего всем требованиям потребителей, возможно при постоянстве качества исходного сырья. В зависимости от качества сырья получаемые в процессах коксования и прокаливания нефтяные коксы различаются по своей структуре и свойствам. Наряду с широко известными физико-химическими свойствами кокса (содержание летучих веществ и серы, плотность, зольность, реакционная способность, электрическая проводимость, теплопроводность и др.) важное значение приобретают также физико-механические свойства - прочность, сыпучесть, коэффициенты внутреннего и внешнего трения, углы естественного откоса, гранулометрический состав, степень уплотнения, сегрегация и т. д. Знание этих свойств [c.9]


    Многообразие направлений использования нефтяных коксов в народном хозяйстве вызывает необходимость в различных и иногда противоположных требованиях к качеству сырья коксования. Это должно учитываться три проектировании и эксплуатации установок по производству кокса. Для получения коксов с заранее заданными свойствами важно не только подобрать соответствующий вид сырья, но и подготовить его к коксованию. [c.49]

    Для объяснения некоторых эксплуатационных свойств нефтяного кокса различиями в молекулярных структурах исходного сырья был использован метод изучения текстуры полученного кокса. Для этого из кокса делали шлифы и получали с них микрофотоснимки в отраженном свете на микроскопе МИМ-6 при различных увеличениях. [c.26]

    Гидрокрекинг — процесс переработки различных нефтяных дистиллятов (реже — остатков) под давлением водорода при умеренных температурах на бифункциональных катализаторах, обладающих кислотными и гидрирующими свойствами. Последнее позволяет получать без образования кокса продукты, во многом сходные с продуктами каталитического крекинга, но значительно менее ароматизованные, очищенные от гетероатомов и не содержащие олефиновых и диеновых углеводородов. Большая гибкость процеоса и возможность получения из данного сырья различных продуктов высокого качества при наличии больших ресурсов водорода, получаемого при каталитическом риформинге, привели к быстрому нарастанию мощностей установок гидрокрекинга. [c.274]

    Природный графит встречается редко и находит ограниченное применение. В больших количествах используют искусственный графит, получаемый нагреванием в электропечи при 2200—2800 °С углей или нефтяного кокса (продукт пиролиза нефтяного пека). Различные формы графита получают также пиролизом (сильное нагревание без доступа воздуха) ряда органических соединений,в том числе полимеров. Содержание примесей в полученном углероде, его структура, механическая прочность и другие свойства очен . сильно зависят от исходного вещества и технологии термической обработки. Продукты пиролиза, представляющие по составу почти чистый углерод, но полученные в разных условиях, сильно отличаются друг от друга — это различные углеграфитовые материалы. [c.354]

    Разнообразие конструктивного оформления трактов транспортирования кокса определяет различную степень измельчения товарных фракций, т. е. применяемое оборудование для обработки кокса и его компоновка формируют гранулометрический состав кокса. При получении нефтяного кокса на установках замедленного коксования уже в процессе гидравлического извлечения образуется мелочь, количество которой определяется физико-механическими свойствами коксового пирога и гидродинамическими характеристиками высоконапорных струй. [c.201]


    Нефтяной кокс в настоящее время используется главным образом нри производстве токопроводящих материалов графитированных электродов (при выплавке электросталей) и анодов для электролитического получения алюминия. Поэтому электрические свойства нефтяного кокса являются одной из основных характеристик эксплуатационных качеств этого кокса, но полученные данные недостаточно обобщаются и нефтяная промышленность довольно часто ставится в затруднительное положение, когда ей предъявляются претензии в отношении электрических качеств кокса, поставляемого на электродные заводы. [c.138]

    Нефтяной кокс может превращаться после специальной обработки в чистый и сверхчистый углеродистый материал с высокой электропроводностью, температуростойкостью, химической стойкостью, а также антифрикционной способностью при сохранении свойств, необходимых для конструкционных материалов. К этому следует добавить его относительно невысокую стоимость, возможность получения в очень больших количествах 1И сравнительно легкую обрабатываемость. [c.7]

    По назначению коксы подразделяют в зависимости от их структурных особенностей [22]. Известно, что все нефтяные коксы имеют пористую структуру. Однако в зависимости от физико-химических свойств исходного сырья и технологии получения куски или частицы кокса различаются формой и размером пор, характером их распределения и структурой межпоровых прослоек. Размер пор (пузырьков) и толщина их стенок определяют крупную или мелкую структуру. Пористость влияет на технические свойства измельченного кокса, форму и размер зерен, гранулометрический состав и т. п. При тонких стенках пор образуется много пыли. Существенное значение имеют трещины в кусках кокса, поскольку от их наличия зависят прочность кокса, его поведение при дроблении, измельчении и термической обработке. При механическом воздействии крупные куски распадаются по трещинам. Трещины предопределяют и так называемую кусковатость" кокса. В табл. 1 представлены показатели качества коксов специального, электродного и коксовой мелочи (в соответствии с ГОСТ 22898-78). [c.17]

    Рентгеноструктурным анализом довольно четко выявляется разница между углями, сажами и нефтяными коксами, т. е. между резко различными каустобиолитами. Но о различии нефтяных коксов, полученных из разных видов нефтяного сырья и при неодинаковых режимах, еще не накоплено четких данных. Практика показала, что различия в свойствах нефтяного кокса из разных видов сырья и искусственных графитов (отечественных и зарубежных) яснее обнаруживаются при определении их удельного электросопротивления и плотности. [c.69]

    О2) способности углеродов проведены в работе [6]. Из этой работы следует, что на реакционную способность НДС влияют физико-химические свойства сырья, технологический режим получения НДС и термообработка полученных углеродов. Установлено, что чем больше в сырье полициклических ароматических углеводородов и чем меньше асфальтенов, тем ниже реакционная способность кокса, н наоборот. Этот вывод имеет важное практическое значение для регулирования качества нефтяных коксов и позволяет научно обоснованно подходить к подбору н подготовке сырья коксования и получать коксы различной степени анизотропии и с требуемыми эксплуатационными свойствами. Как правило, более анизотропные коксы, полученные из деасфальтизатов, обладают меньшими значениями константы скорости реакции, в отличие от более изотропных коксов на основе асфальтитов. Технический углерод, по данным О. А. Морозова [175], более реакционно-способен, чем нефтяной кокс. Это можно объяснить значительно более трудным реагированием углерода с активными газами по базисным его плоскостям, чем по торцам этих плоскостей. Поэтому более анизотропные коксы, близкие по степени упорядоченности к структуре графита, реагируют с активными газами слабее, чем изотропные. Как и следовало ожидать в зависимости от температуры термообработки сырого кокса реакционная способность имеет сложную зависимость (рис. 65). [c.176]

    Нефтяной кокс обладает комплексом физико-химических и физико-механических свойств, обеспечивающих получение различных углеродистых материалов заданного качества. [c.20]

    Значительные ресурсы нефтяного сырья, возможность получения практически беззольных, с широким диапазоном свойств разновидностей нефтяного углерода — сал<и, кокса, углеродистого волокна и пеков — привели за последние десятилетия к быстрому развитию на нефтеперерабатывающих и сажевых заводах процессов получения этих продуктов и сырья для них. [c.6]

    Нефтяные малосернистые коксы и брикеты из нефтяного кокса можно использовать для получения карбидов (кальция, кремния, бора и др.) и ферросплавов, широко применяемых для получения ацетилена, в абразивной промышленности, при изготовлении полупроводников, раскислителей, для улучшения свойств сталей и др. Большее внимание в этой работе уделяется применению в качестве ВОС сернистых и высокосернистых нефтяных коксов и иефте-коксобрикетов. [c.104]


    Для получения нефтяных коксов с заданными свойствами необходимо подобрать соответствующий вид сырья и подготовить его к коксованию [79-84]. Важ- / ной характеристикой при оценке сырья коксования является коксуемость его по Конрадсону. Она зависит от плотности и химической природы нефтяных остатков. Ориентировочно коксуемость можно определить по данным группового состава сырья. Основные коксообразующие вещества - асфальтены и смолы. Выход кокса из асфапьтенов составляет 57,0- 5,5%, из силикагеле-вых смол - 27-31% и из смол - 1,2-6,8% [3]. Для установок замедленного коксования используют сырье коксуемостью 12-20%. С углублением переработки коксуемость остатков возрастает до 30% и более, что значительно повышает эффективность процесса коксования. Высокая коксуемость малосернистых остатков может быть достигнута термоконденсацией их при по-вьпиенном давлении. Сернистые и высокосернистые нефтяные остатки, как правило, имеют высокую коксуемость. [c.51]

    РЕГУЛИРОВАНИЕ КАЧЕСТВА НЕФТЯНЫХ ОСТАТКОВ С ЦЕЛЬЮ ПОЛУЧЕНИЯ КОКСОВ С ЗАРАНЕЕ ЗАДАННЫМИ СВОЙСТВАМИ [c.66]

    В общем случае качество электродной продукции и конструкционных изделий, а также стабильность их свойств зависят от физикохимических свойств нефтяных остатков, из которых в дальнейшем формируется кокс-наполнитель, от природы и качества пеков, используемых для получения связующего, и технологических режимов на различных стадиях переработки нефтяных остатков и кокса. [c.66]

    Высокое содержание сернистых соединений в нефтяных остатках не всегда является фактором, отрицательно влияющим на качество связующих веществ. Так, при получении элементных углей применение нефтяного связующего с содержанием серы до 2,5% и с хорошими упруго-пластическими свойствами предпочтительнее даже, чем использование модифицированных каменноугольных связующих веществ. Брикетирование сернистых нефтяных коксов требует применения сернистых связующих веществ, в которых высокое содержание серы является положительным фактором. [c.77]

    В предлагаемой читателям книге авторы рассмотрели многие вопросы, связанные с получением нефтяного кокса - технологию, оборудование, свойства кокса и др. Большое внимание уделено специфичному, характерному только для установок коксования оборудованию для извлечения кокса из реакционных аппаратов, внутриуста-новочной обработке и транспорту нефтяного кокса. [c.5]

    Регулировать качество нефтяных остатков, используемых для получения кокса с определенными свойствами, можно за счет выявления действия различных факторов на термодеструктивные процессы, сопровож-даюхцие формирование нефтяного кокса [93-95]. В последние годы исследования процесса коксования направлены на изучение особенностей физико-химических превращений структуры нефтяных остатков на отдельных стадиях с позиций физико-химической механики нефтяных дисперсных систем [96-98]. [c.54]

    Продукт, полученный после обжига, состоит из кокса-наполнп-теля и кокса, образовавшегося при коксовании связующего. Поскольку температура прокаливания (1100—1300 °С) и обессеривания (1450 °С) нефтяных коксов обычно другая, чем при обжиге заготовок, возникают различия в физико-химических свойствах (механическая прочность, реакционная способность, пористость, электропроводность и др.) кокса-наполнителя и кокса, образовавшегося из связующего. Наиболее однородной и, следовательно, лучшей по качеству электродная продукция будет при использо-ватт наполнителя и связующего, близких по степени анизометрни структуры частиц и при максимальном приближении условий прокаливания наполнителя и обл<ига зеленых заготовок (наполнитель, смешанный с пеком в необходимом количестве). В принципе такие условия могут быть достигнуты при следующих комбинациях компонентов зеленых заготовок нефтяной кокснефтяной пек пековый кокс+каменноугольный пек нефтяной кокс+каменноугольный пек пековый кокс + нефтяной пек. Для выбора типа пеков и коксов, позволяющих получать зеленые заготовки и далее из них электродные изделия (заготовки) с требуемыми качествами, необходимы дополнительные исследования. [c.95]

    После прокалки в вертикальной камерной печи Челябинского электродного завода нефтяной сернистый кокс был получен высокой степени однородности. Следовательно, с уменьшением длительности прокалки кокса и (увеличением размеров кусков увеличивается степень неравномертости в объемной усадке. Поэтому нефтяной и пиролизный к ксы после прокалки во вращающейся печи с общим временем пребывания в ней 30—40 мин. идут в дальнейшее производство сильно неоднороднылш по своим свойствам. Анод, работающих при максимальной температуре 950°, будет иметь в случае применения нефтяного кокса дополнительную усадку в несколько большей степени, чем при применении пекового. Следует оговориться, что усадка анода зависит и от усадки коксового остатка из пека, которого в аноде находится около 30%. Этот коксовый остаток будет иметь такую же общую усадку, какую имеют нефтяной и пиролизный коксы. [c.150]

    Природа нефтяного кокса изучалась намного меньше, чем ископаемых углей. Имеющиеся данные показывают, что нефтяной кокс близок по свойствам к углям, хотя исходный материал и условия образования этих видов углерода совершенно различны. В настоящее время имеются две основные точки зрения на строение углей. Ряд ученых, сознательно или подсознательно базируясь на том, что часть вещества углей экстрагируется и экстракты содержат фракции среднего молекулярного веса от 400—500 до 6000 [93], считает, что уголь состоит из дискретных макромолекул. На основе обобщения данных, полученных при изучении углей методами эле-ме1Нтарного анализа, рентгенографии, инфракрасной спектроскопии, окисления и другими, предложены структур- [c.104]

    Нефтяными коксами называют твердые углеродистые материалы, полученные при коксовании различных нефтяных остатков. Свойства нефтяных коксов зависят главным образом от вида нефтяных остатков. Поэтому нефтяные коксы разделяют по роду нефтяных остатков, из которых они получаются, на две большие группы крекинговые и пиролизные. Крекинговые коксы получаются из остатков от переработки нефтепродуктов крекингпроцессом, а пиролизные коксы — из остатков пиролиза. [c.67]

    Рассмотрены важнейшие свойства нефтяного малосернистого и сернистого коксов применительно к условиям использования их в электродной и алюминиевой промышленности. При этом осноЬное внимание уделено зависимости свойств кокса от качества исходного сырья и технологии его получения. [c.2]

    В. И. Касаточкин с сотрудниками [102] определяли в 1958 г. т. э. д. с. на контакте медь — коксовый электрод. Они подтвердили данные 1951 г. Лоэбнера [301] и затем данные И. Ф. Купина и С. В. Шулепова [153]. Оказалось, что т. з. д. с. имела минимальное значение, когда в качестве углеродистого электрода применяли нефтяной кокс, предварительно прокаленный при 1300—1500 °С. Но после прокалки кокса при 2100 °С величина т. э. д, с. имела максимальное значение. Таким образом, полученные этими авторами значения т. э. д. с. имеют экстремумы, совпадающие с результатами наших исследований в области истинной плотности коксов, механических свойств, электропроводности и, как будет показано ниже, реакционной спо--соб ности. [c.216]

    Потребность стран мира в коксе для производства анодов, которые используют для выплавки алюминия, в период 1985-2000 гг. будет составлять 41-43% общего производства. Значительное количество нефтяного кокса будет расходоваться на изготовление электродной продукции. В СССР для этих целей в настоящее время применяют кокс, получаемый на кубовых установках из специально подобранного и подготовленного сырья. Стабильная работа крупногабаритных электродов при повышенных токовых нагрузках обеспечивается благодаря высокой их электрической проводимости и низкому коэффициенту термического расщирения. Для получения электродной продукции с подобными свойствами требуется кокс определенной структуры - так называемый игольчатый кокс (Иеед.1е соке). Игольчатый кокс получают из высокоароматизированных малосернистых дистиллятных остатков. Его производят в США, СССР, Англии, Японии и других странах. [c.8]

    Технология получения многих конструкционных углеродистых материалов основана на использовании нефтяного пиролизного специального кокса [15]. Кубовый пиролизный кокс - это оптимальное сьфье для приготовления ряда графитов. В нем сочетаются такие свойства, как высокая прочность и хорошая графитируе-мость, высокая электрическая проводимость и низкая реакционная способность. [c.14]

    Нефтяные коксы обычно классифиц уют по их происхождению, т. е. по типу используемого сьфья и по способу получения. В зависимости от назначения к коксам предъявляют различные требования, которые регламентируются ГОСТ 22898-78 для малосернистых коксов и техническими условиями для коксов с содержанием серы свыше 1,5%. Свойства нефтяных коксов зависят от природы исходной нефти, способа получения остатков и метода их коксования. [c.15]

    Одним из наиболее важных показателей качества, по которому классифицируют коксы, является содержание в них серы малосернистые - 1,5% 8, сернистые - 4,0% 8, и высокосернистые - > 4,0% 8. При переработке сернистых нефтей получают нефтяной кокс с содержанием серы 1,5-4,0% и даже 5%. Высокотемпературное прокаливание кокса способствует удалению серы [183. Однако обессеренные нефтяные коксы имеют существенный недостаток - они плохо графитируют-ся [191. Сернистые коксы отличаются менее благоприятными свойствами — вызывают коррозию оборудования, повьпиенную трещиноватость электродных изделий, разрушение огнеупорной кладки печей прокаливания и т. п., вследствие чего их использование ограничено определенными областями. По способу получения нефтяшые коксы подразделяют на коксы замедленного коксования, коксокубовые и контактного коксования. [c.15]

    В книге изложены научные и технологические основы производства и облагораживания нефтяного углерода (кокс, сажа, углеродистое волокно, пеки) и описаны его физико-химические свойства. Обобщены результаты исследований по физико-химической механике нефтяных дисперсных систем — источника получения нефтяного углерода. Рассмотрены меж-молекулярные взаимодействия структурирующихся компонентов нефти, принципы регулирования структурно-механической прочности, устойчивости и размеров сложных структурных гдиниц, существенно влияющие на ход технологических процессов и на качество получаемого углерода. [c.2]

    Кокс точечной структурб состоит из отдельных мелких частиц с несформировавшейся ориентацией элементарных кристаллитов. Структура кокса плотная с однородными участками, небольшим числом округлых пор и "точечным" узором. Уровень неравноосности зерен кокса точечной структуры ниже, чем у волокнистого. Все нефтяные коксы имеют участки как волокнистой, так и точечной структуры. Волокнистая структура коксов обладает ярко выраженными анизотропными свойствами, а точечная - изотропными. Изотропными свойствами обладает кокс, полученный из природного продукта гильсонита [150]. [c.87]

    Сланцевый кокс имеет однородную структуру, для которой не наблюдается какой-либо преимущественной ориентации структурных элементов. Особенно это характерно дпя кокса, полученного из предварительно окисленной смолы. Предварительное окисление - один из способов подготовки сырья к коксованию Кокс сланцевый из окисленного сырья (КСОС) по плотности и прочности значительно превосходит нефтяные и по свойствам очень близок к коксу марки КНПС. Но этот кокс менее термостоек и не выдерживает значительных перепадов температур. [c.92]

    Для получения необходимых количественных соотношений температурного поля авторами и сотрудниками [161, 164] были проведены экспериментальные исследования на промышленных камерах диаметром 4,6 и 5 5 м. На рис. 25 показано изменение температуры поверхности камеры по высоте при переработке гудрона котур-тепинской нефти. Как видно, температуры в нижней части и вначале коксования незначительные и достигают максимальных значений через 6-8 ч после включения камеры на поток. В этой зоне камеры происходит постепенный разогрев сырья и затем переход его в кокс - первая стадия коксования. После образования кокса наблюдается падение температуры у поверхности камеры. Экспериментальные данные указывают на относительно быстрое падение тёмпературы, что в основном определяется теппофизическими свойствами нефтяного кокса и тепловыми потерями с поверхности камер. Вследствие этого пристеночный кокс быстро охлаждается и в течение всего цикла коксования сохраняет температуру 250-350 °С. [c.99]

    Сохранение высокой реакционной способности для прокаленных нефтяных коксов, по-видимому, связано с тем, что при 1300 °С начинается процесс обессеривания и изменяется поровая структура и реакционная поверхность в материале кокса. Это обстоятельство говорит о том, что существующая ныне практика шихтовки сырых коксов с различным содержанием серы и получением смеси с суммарным содержанием серы до 1,5% вряд ли является эффективным приемом. Можно предвидеть целый ряд сложностей при шихтовании сырых коксов по их реакционной способности в связи с очевидной не аддитивностью изменения показателей в процессе прокалки. По нашему мнению изготовить аноды с хорошими эксплуатационными свойствами можно не шихтованием сырых коксов с различным содержанием серы до средних 1,5%, а монококса с более высоким содержанием серы (до 2,5%-3%>). [c.103]

    Если требуется получить углерод с высокой электропроводностью и с необходимыми теплофпзическими свойствами, то создают условия для упорядочения кристаллитов кокса в течение значительно большего времени. При этом получение углерода и его прокаливание (модифицирование поверхности) целесообразно проводить в две стадии. Обычно это применяют при получении углерода, используемого в качестве наполнителя электродных масс. Малосернистые коксы, как правило, прокаливают при мягком режиме с целью удаления летучих веществ и обеспечения необходимой скорости структурирования (1000—1400°С, 24 ч). Жесткий режим (1400—1500 °С, 1—2 ч) обеспечивает также удаление серы из нефтяных углеродов. [c.85]

    Нефтяные углероды (нефтяные пеки, коксы и сажи) можно использовать в народном хозяйстве в сыром виде и после предварительного их облагораживания. Некоторые сорта нефтяных пеков после их формования должны с целью получения конечного продукта пройти стадию карбонизации и графитации. При использовании нефтяного кокса в электродной промышленности (производство электродов, конструкционных материалов) он должен пройти стадию прокаливания при 1100—1400 °С, в результате чего упорядочивается его структура, увеличивается тепло- и электропроводность, уменьшается содержание неуглеродиых элементов, регулируются и улучшаются поверхностные и другие свойства. [c.187]

    Регулирование качества нефтяных остатков, используемых для получения коксов со строго определенными, но разными (в зависимости от направления их использования) свойствами, основано на требованиях, предъявляемых к углеродистым материалам в различных отраслях народного хозяйства. Четко определенные технические требования к углеродистым материалам позволяют не только правильно подготовить сырье для кокосования, но и подобрать оптимальный режим процесса. [c.66]

    Динамика изменения при прокаливании суммарной пористости коксов, полученных с установок замедленного коксования, изучалась на двух образцах после нагрева их в печи Таммана в течение 1 ч. У прокаленных образцов с начальными размерами 20X20X40 мм находили потери массы путем взвешивания на аналитических весах и изменение объема измерением граней с точностью до 0,05 мм. Зависимость свойств нефтяных коксов от температуры прокаливания приведена в табл. 21. [c.162]


Смотреть страницы где упоминается термин Кокс нефтяной, получение и свойства: [c.61]    [c.40]    [c.58]    [c.20]    [c.25]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.97 , c.253 , c.268 , c.268 , c.975 ]




ПОИСК





Смотрите так же термины и статьи:

Кокс Сох

Кокс я его свойства

Коксо газ

получение и свойства



© 2025 chem21.info Реклама на сайте