Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы, дегидратация

    Применение более высоких температур ограничивается главным образом усилением коррозии аппаратуры. В качестве сырья используется экспанзерный газ аммиачного производства, содержащий до 90% СОг, и жидкий аммиак, взятый в избытке 100— 125% от стехиометрического количества. При этих условиях выход карбамида (по СОг) составляет 60—70% и в плаве, образующемся при дегидратации карбамата, содержится около 35% карбамида. Экономический эффект производства и себестоимость карбамида зависят от использования непревращенных реагентов — аммиака и диоксида углерода. [c.158]


    Полиэтилен —полимеризационная термопластичная пластическая масса. Исходный мономер — этилен — получают из природных или нефтяных газов он может быть также получен дегидратацией этанола или гидрированием ацетилена. Получение полимера может быть осуществлено при высоком, среднем или низком давлении. В СССР выпускается полиэтилен ВД низкой плотности, получаемый по методу высокого давления, и полиэтилен ИД высокой плотности, получаемый по методу низкого давления. Полиэтилен ВД с молекулярным весом 18 000— 25 000 условно называется по- [c.419]

    Эта реакция может протекать в гомогенной газовой фазе, двухфазной системе изобутилен (газ) — вода (жидкость) и в системе изобутилен (жидкость) — вода (жидкость) [11]. Процесс выделения изобутилена по данному методу состоит из двух основных стадий 1) гидратации изобутилена в грет-бутиловый спирт и 2) дегидратация грег-бутилового спирта. - —------ [c.727]

    Изопропиловый спирт Пропилен, ацетон Нихромовая спираль 450° С, разложение 3,78%. Обугленная нихромовая спираль 250—300° С, при разбавлении спирта углекислым газом дегидратация — 81,9% [2110] [c.897]

    К о т л я р е в с к и й И. Л. Получение сжатых непредельных газов дегидратацией спиртов под давлением. ЖПХ, вып. 10, окт. 1956, стр. 1605. [c.233]

    Карбамат аммония приготовляется непосредственно из газообразного аммиака и углекислого газа. Дегидратация производится в закрытых аппаратах при 130°. Этот метод применяется для про мышленного производства мочевины. [c.414]

    Прежде в Германии почти половину всего этилена готовили частичным гидрированием ацетилена. Однако по сравнению с другими методами получения этилена (дегидрирование и крекинг газов переработки нефти и природных газов, дегидратация этанола) этот метод экономически менее выгоден. [c.124]

    Концентрация гликоля, в свою очередь, зависит от эффективности его регенерации. В промысловых установках обычно применяется регенерация гликоля при атмосферном давлении. При температуре в ребойлере около 204,4° С можно получить. 98—98,7%-ный ТЭГ. На рис. 155 показана зависимость депрессии точки росы газа от скорости циркуляции ТЭГ различной концентрации. Эти данные получены на промышленной установке осушки газа, в абсорбере которой имеется четыре тарелки. При обычной температуре контакта в таком абсорбере можно понизить точку росы газа на 30,6—39° С. Такая депрессия предотвращает гидратообразование в газосборных сетях и зачастую является достаточной для нормальной транспортировки газа по магистральным газопроводам, если газ перед подачей на осушку в абсорбер был охлажден до обычной температуры. Предварительное охлаждение газа с помощью атмосферного воздуха или воды в градирнях — самый дешевый способ дегидратации газа, если в результате охлаждения удается понизить температуру газа на 5—6° С и более. [c.230]


    Синтетические алюмосиликатные катализаторы более устойчивы при переработке сернистого сырья. Как правило, процессы формирования структуры этих катализаторов проводят при температуре прокаливания 700—800° С. Вследствие этого при регенерации катализатора при температурах, не превышающих 650° С, заметной дегидратации поверхности не происходит. Однако при переработке сернистого сырья происходит так называемое вторичное отравление катализатора продуктами коррозии аппаратуры. В процессе каталитического крекинга при переработке сернистого сырья или сырья, содержащего минеральные соли, в связи с большой подачей пара происходит интенсивная коррозия стенок аппаратов (реакторов и регенераторов). Продукты коррозии в виде сернистого железа, окислов железа и других соединений в мелкодисперсном состоянии захватываются потоком паров или газов и переносятся на катализатор. Они прочно удерживаются на внешней поверхности гранул катализатора, проникают в его поры и препятствуют доступу паров и газов к внутренней новерхности катализатора, т. е. снижают его дегидрирующую активность. Происходит необратимая потеря активности катализатора, так как простыми физическими методами эти отложения не удается удалить. [c.19]

    Освещены также вопросы проектирования процессов подготовки гааа, т. е. холодильные процессы, процессы сжижения, дегидратации, абсорбции, адсорбции, сероочистки и получения серы из природного газа, содержащего сероводород. Уделено внимание контролю процессов подготовки газа. [c.4]

    Наличие влаги в природных газах практически не влияет на поведение углеводородной фазы, но может явиться источником многих проблем транспортировки и переработки газов. Поэтому любая система газоснабжения и переработки обязательно включает в себя процесс дегидратации газа и предусматривает мероприятия по борьбе с гидратообразованием. [c.211]

    По природе активные угли принадлежат к группе графитовых тел. Для их производства используются углесодержащие материалы растительного происхождения, ископаемые каменные угли, каменноугольные полукоксы и др. Существуют два основных способа получения активных углей парогазовый метод активирования (процесс частичного выжигания углеродистых соединений из угля-сырца и окисления самого углерода за счет кислорода воздуха, пара и углекислого газа) и активирование углей неорганическими добавками (термическое разложение органического материала угля-сырца в присутствии неорганических добавок). В зависимости от способа и условий получения активные угли могут резко отличаться природой поверхности, которая в свою очередь может меняться при хранении в присутствии кислорода воздуха и воды. Активный уголь обладает каталитической активностью в ряде химических реакций окисления, галогенирования, дегидрохлорирования, дегидратации, полимеризации и др. [c.390]

    Процессы дегидрирования, как правило, проходят с высоким выходом продукта и при увеличении объема реакционной смеси они характеризуются также эндотермичностью. Большая часть таких процессов проводится при одном прохождении газа через слой катализатора под атмосферным давлением или даже в вакууме. Так, например, необратимый процесс одновременного каталитического дегидрирования и дегидратации этанола в производстве бутадиена происходит в промышленных условиях в одном слое трубчатого реактора под разрежением 50 мм рт. ст. при непрерывном подводе тепла для компенсации эндотермического эффекта. Для проведения такого процесса в изотермическом кипящем слое, по-видимому, целесообразно применение трубчатого реактора тина, изображенного на рис. 59. [c.208]

    В целом получение карбамида — гетерогенный процесс в системе Г—Ж, протекающий в кинетической области, причем скорость его лимитируется протекающей наиболее медленно стадией дегидратации карбамата аммония в расплаве. На равновесие и скорость синтеза карбамида влияют давление, температура и состав системы. Поскольку карбамат аммония обладает высоким давлением паров и, кроме того, синтез в целом протекает с уменьшением объема газа, то равновесный выход карбамида растет с увеличением давления (рис. 59). Скорость процесса и фактический выход карбамида также резко увеличиваются с повышением давления в результате возрастания движущей силы процесса, т. е. возрастания концентрацин газообразных реагентов. Скорость процесса, в частности скорость лимитирующей стадии (б), резко возрастает с повышением температуры, в результате чего растет фактический выход карбамида. Из рис. 60 видно, что выше 180°С кривые выхода проходят через максимум. При дальнейшем увеличении времени пребывания реакционной смеси в зоне нагрева выход карбамида падает из-за усиления побочных реакций. Выход продукта можно также увеличить применением избытка аммиака в исходной смеси по отношению к стехиометрическому соотношению [c.157]


    Общий расход тепла на нагревание п дегидратацию кислоты, удаление воды и газов будет  [c.337]

    Первичные продукты пиролиза в подсводовом пространстве коксовой печи претерпевают дальнейшее термическое разложение, и в результате деалкилирования, дегидрирования гидроароматических циклических систем, конденсации и дегидратации фенолов образуются дополнительные количества кокса, газа и вторичные химические продукты. Последние представляют собой в основном смеси термодинамически наиболее выгодных незамещенных ароматических углеводородов или их метилпроизводных, а также полициклических гетероциклических соединений. Образование бензольных или полициклических ароматических углеводородов из ацетилена и некоторых других простых углеводородов при коксовании мало вероятно, так как в продуктах пиролиза угля ацетилен практически отсутствует. [c.150]

Рис. 111-39. Схема установки дегидратации природного газа [453] Рис. 111-39. <a href="/info/13990">Схема установки</a> дегидратации природного газа [453]
    Сточные шламы ликвидируют путем выпаривания и сушки, которые обычно осуществляют после анаэробной ферментации. Ее проводят для удаления биологически отработанной массы в отапливаемых газом котлах, где широко используют биогаз, получаемый в ферментационных газогенераторах. Полной дегидратации шламов можно достичь только в установках, отапливаемых газами и СНГ. Высушенный шлам содержит достаточное количество растительных и минеральных веществ, которые позволяют использовать его как удобрение. Такой шлам, с одной стороны, достаточно легко продать сельскохозяйственным потребителям и распределить на обширных площадях, а с другой,— сжечь в мусоросжигателях вместе с твердыми городскими отходами в тех случаях, когда количество его невелико или когда нет спроса на шлам как удобрение. [c.373]

    Упражнение 1Х.8. Лабораторные исследования дегидратации этилового спирта показывают, что реакция С2Н5ОН —> С2Н4 -Ь Н2О протекает-по первому порядку. Константа скоростп реакции при 150° С равна 0,52 л (моль-сек). Предложено сконструировать небольшой лабораторный реактор, который работал бы прп давлении 2 атм и температуре 150° С и давал бы 35%-е превращение спирта при массовой скорости потока 9,9 кг/ч. Если диаметр реактора 10 сл, то какова должна быть его длпна Предполагается, что газ идеален, реактор работает в режиме идеального вытеснения, а теплотой реакции можно пренебречь. [c.265]

    Вторичный и третичный бутиловые спирты в чрезвычайно ограниченном масштабе применяются в качестве растворителей в производстве некоторых типов флотореагентов и эфиров. Кроме того, триметилкарбинол применяется в ряде стран для получения особо чистого изобутилена дегидратацией спирта. Однако накопленный промышленный опыт свидетельствует о том, что целесообразнее выделять изобутилен неносрёдственно из нефтезаводских газов с последующей очисткой и концентрированием его  [c.83]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Для получения металлических катализаторов на носителях требуется восстановление окислов или солей газом (водородом, парами спирта) либо восстанавливающим раствором. В первом случае через катализатор, предварительно прокаленный для перевода солей в окислы, пропускают газ-восстановитель при повышенной температуре. Очень часто процесс восстановления ведут непосредственно в реакторе. Примером металлических катализаторов на носителе, восстанавливаемых из солей растворами, являются платиновые катализаторы на окиси алюминия и па силикагеле. Для восстановления соединений платины используют аммиачный раствор формальдегида [19 ]. При приготовлении платино-силикагелевого и аналогичных катализаторов надо иметь в виду, что неносредственная пропитка геля раствором часто приводит к растрескиванию геля. Причина этого, вероятно, кроется в возникновении при быстрой гидратации внутренних напряжений в геле, аналогичных возникаюнщм во время ускоренной дегидратации, или в более простом эффекте за счет давления сжимаемого в капиллярах зерна воздуха. Для устранения растрескивания гель перед пропиткой насыщают водой, пропуская через него сильно увлажненный воздух [16]. [c.184]

    Шидкофазные лабораторные реакторы обладают рядом отличий от газофазных, поэтому их целесообразно рассмотреть особо. Устройство аппаратов мало меняется от того, проводятся ли в них чисто жидкофазные или газо-жидкофазные реакции с твердым катализатором. Последний тип реакций, к которому относятся жидкофазное гидрирование, восстановление водородом, жидкофазное окисление молекулярным кислородом в настоящее время более распространен в технике, чем первый, к которому принадлежат реакции алкили-рования, дегидратации и этерификации. [c.414]

    При дегидратации этилового спирта С2Н5ОНС2Н4-f Н2О на катализаторе AlgOg при 653 К Через каждые 3 мин измеряли расход 75%-юго вС)Дно-спиртового раствора п и объем образовавшегося газа Von в газовой бюретке  [c.425]

    Дегидратация с образованием ненасыщенных соединений. Раньше этот процесс служил для получения низших олефинов из соот-ветстиующих спиртов, для чего применяли катализ серной кислотой в жидкой фазе при 100—160°С или вели газофазный процесс с катализатором АЬОз при 350—400°С. В связи с наличием, более дешеных источников низших олефинов процесс сохранил значение лишь для получения изобутилена. В одном из вариантов он применяется для извлечения изобутилена из С4-фракций газов крекинга и пиролиза (стр. 53), когда одна из стадий состоит в дегидра-тацщ грег-бутанола при катализе серной кислотой или сульфока- [c.197]

    В процессе фирмы Mitsubishi (Япония) окисление концентрированной (до 5% (об.) ] углеводородвоздушной смеси проводится в контактном аппарате с псев-доожиженпым слоем катализатора. Выход малеинового ангидрида в этом случае несколько ниже, чем при окислении на неподвижном слое. Продукты реакции из контактного аппарата направляются на водное улавливание. Газы перед выбросом в атмосферу проходят дополнительную санитарную очистку. Водный раствор малеиновой кислоты направляется на дегидратацию, малеиновый ангидрид-сырец подвергается ректификации. Малеиновый ангидрид может быть получен в виде гранул или расплава. , [c.213]

    Гидрирование ацетиленового спирта в диметилвинилкарбинол осуществляется на суспендированном в воде катализаторе, представляющем собой коллоидальный палладий, осажденный на носитель, с добавкой модификатора. Реакция протекает в системе из двух реакторов 6 (на рисунке показан один) при 30—80°Си давлении 0,5 — 1,0 МПа. Гидрирование происходит с выходом, близким к теоретически возможному. Продукты реакции проходят газосепаратор 7. Непрореагировавщий водород возвращается на гидрирование. Водная суспензия катализатора отделяется от органических продуктов с помощью центрифуги 8 и также возвращается в реактор 7. Сырой 2-метил-3-бутен-2-ол испаряется в теплообменнике 9 и поступает в реактор дегидратации 10. Превращение изоамиленового спирта в изопрен осуществляется в стационарном слое высокочистой окиси алюминия при атмосферном давлении и 250—300 °С. Цикл контактирования длится более 100 ч, после чего катализатор подвергается окислительной регенерации. Степень превращения изоамиленового спирта достигает 97%. Контактный газ конденсируется и подвергается водной отмывке в промывной колонне 11, в сочетании с отпарной колонной 12. Отмытый изоамиленовый спирт возвращается на контактирование Изопрен-сырец направляется на систему колонн экстрактивной ректификации Ы и 14, пройдя которые мономер достигает степени чистоты 99,9%. [c.382]

    Позже было найдено более удобное сырье для синтеза изобутилена — изобутиловый спирт сивушных масел, а также более удобный путь получения трйметилкарбинола (гидрата--цпей изобутилена, добытого дегидратацией изобутилового спирта). Попутно отметим, что изобутилен из изобутилового спирта, синтезируемого из водяного газа, в настоящее время является важнейшим промышленным сырьем для производства изооктана в странах, лишенных природных ресурсов нефти (Германия и Япония). [c.27]

    Термическую дегидратацию ведут в растворителе, например, псевдокумоле, при 200—230 °С, повыщенном давлении и с подачей инертного газа. Такой продукт более загрязнен и доочищается перегонкой в вакууме или перекристаллизацией. Принципиальная схема получения тримеллитового ангидрида при окислении азотной кислотой [120] представлена на рис. 17. [c.93]

    Выбор условий проведения процесса большей частью обусловливается экономическими соображениями. Как улге отмеча,пось, при повышении температуры равновесие резко сдвигается в Toj)ony дегидратации спирта, тогда как скорость гидратации увеличивается. Отсюда получается, что при определенной величине активности катализатора повышение скорости реакции вызывает увеличение объема этилена, подвергающегося рециркуляции, так как за проход его реагирует меньше. Увеличение объема рециркулирующих газов повышает расход энергии. Степень превращения этилена за проход МО /КПО повысить увеличением давления, но это влечет за собой донол-нител]лн.1е расходы. Состав смеси паров воды и этилена также определяется частично экономическими соображениями. При сни/кении парциального давления воды ее степень превращения за проход увеличивается, а этилена падает. Следовательно, это также увеличит степень рециркуляции этилена. Правда, одновременно уменьшится количество тепла, требующееся для испарения воды. Наиболее экономичными будут условия, при которых расход энергии иа повышение рециркуляции этилепа будет уравновешиваться снижением расходов на испарение воды. [c.459]


Смотреть страницы где упоминается термин Газы, дегидратация: [c.45]    [c.66]    [c.340]    [c.360]    [c.347]    [c.140]    [c.371]    [c.197]    [c.210]    [c.480]    [c.315]    [c.67]    [c.59]    [c.195]    [c.200]    [c.130]    [c.405]    [c.568]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.378 ]




ПОИСК





Смотрите так же термины и статьи:

Газы, дегидратация от сернистых соединений

Газы, дегидратация сланцев, окисление

Газы, дегидратация удаление сероводорода из них

Дегидратация

Осушка газа Дегидратация

Осушка газа Дегидратация абсорбцией

Осушка газа Дегидратация адсорбцией



© 2025 chem21.info Реклама на сайте