Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины галоидов

    Чтобы снизить вклад побочных реакций и повысить выход основного продукта, хлорирование олефинов проводят в присутствии СО или других инертных веществ при 350—450° С и молярных отношениях олефин галоид от 0,8 до 7,6 и СО галоид от 0,2 до 4,5. [c.285]

    На основании большого количества наблюдений Марковников вывел правило, согласно которому при присоединении галоидоводорода к олефину галоид присоединяется к наименее гидрогенизированному атому, а водород к наиболее гидрогенизированному. Это правило известно под названием правилу Марковникова. [c.77]


    Исследуя реакционную способность хлора и брома в галоидных гексадецнлах в зависимости от положения галоида в цепи парафинового углеводорода, Азингер и Экольдт нашли [22], что вторичные гало-гениды, у которых галоид связан с третьим—восьмым атомами углерода, реагируют с циклогексиламином одинаково быстро. Галоид, расположенный у второго атома углерода, хотя тоже является вторичным, но реагирует в 2 раза быстрее, чем остальные изомеры. К тому же галоид Ei положениях 3, 4, 5 и т. д. сам по себе легче отщепля ется в виде га-лоидоводорода. В результате исследований Азингера [23] стало известным, что при дегидрохлорировании хлористых алкилов общей формулы Ri H2 H 1 H2R2 оба теоретически возможных олефина образуются в эквимолярных количествах. Если хлор расположен у второго атома углерода, получается 33% олефина с концевой двойной связью и 67% другого изомера  [c.538]

    Отсюда ясно, что если имеются конкурирующие реакции — дегидрохлорирование и двойной обмен — галоид в положении 2 образует меньше олефина и в большей степени вступает в реакцию двойного обмена. Другие же вторичные галоидные алкилы реагируют преимущественно с образованием олефина. Теперь понятно, почему Шорлеммер всегда обнаруживал только галоген в положении 2 ои получал спирт с гидроксильной группой у второго атома углерода в значительно больших количествах, чем другие изомеры, а точность его экспериментальной методики была недостаточна, чтобы последние можно было уловить. [c.538]

    В случае обратных реакций, например дегидрогалоидирования, возникают точно такие же зависимости. Так, если связанный с галоидом углерод расположен между двумя метиленовыми группами, при отщеплении галоидоводорода образуются два изомерных олефина в экви-мол ярном соотношении. [c.551]

    Реакция, катализированная галоидами металлов, обратима и является реакцией первого порядка. Состав продуктов реакции ограничивается термодинамическим равновесием процентное содержание парафинов с возрастанием температуры уменьшается. Безводный хлористый алюминий наиболее эффективно применяется для изомеризации н-бутана в изобутап. Этот катализатор, так же как и бромистый алюминий и фтористый бор, необходимо активировать при помощи галоид-водорода или веществами, способными в условиях реакции давать до начала изомеризации галоид-водород [397—399]. К другим активирующим агентам относятся нагрев [400], вода [397], кислород [400, 401], олефины и алкил-галоиды. [c.116]


    Значительная реакционная способность олефинов позволяет использовать их для синтеза многих кислородсодержащих соединений прямым окислением (кислородом, озоном и другими агентами окисления) или через промежуточные реакции (присоединения галоидов, галоидоводородных, неорганических и органических кислот с последующим их гидролизом). [c.161]

    Галоиды могут вступать в реакции замещения и присоединения по ионному или радикальному механизму, что зависит от природы реагентов и условий реакции. Прямое замещение в алканах и цикло-алканах, присоединение к алкенам и ароматическим углеводородам может протекать по радикальному механизму, а замещение в ароматических углеводородах и присоединение к олефинам в присутствии ионных катализаторов (или в полярных средах) — через ионный. [c.266]

    В качестве системы олефин — галоид меди была взята система этилен — нолухлористая медь, так как для этой системы возможны исследования в широком диапазоне температур и давлений. Данные по давлению диссоциации для этой системы приводятся в литературе [9] в широком интервале температур. В качестве второго газового компонента, именуемого в дальнейшем инертным газом, были 1[снользова-ны водород II этан. [c.69]

    Алкилирующими агентами могут служить ос -олефины, галоид-алканы, преимущественно хлоралканы и спирты. Наиболее перспективными являются ос -олефины, получаемые олигомеризацией этилена в присутствии окисных катализаторов и содержащие от восьми до двадцати четырех атомов углерода в цепи, и низшие олефины (пропилен и бутилен) [40]. Гексеновая фракция ос -олефинов, получаемых олигомеризацией этилена, в настоящее время еще не нашла квалифицированного применения. Применение галоидалканов и спиртов для алкилирования нафталина ограничено сырьевой базой этих алкилирующих агентов. Предположительные темпы роста производства олефинового сырья составляют 4-6% в год [42]. [c.18]

    Согласно правилу Марковникова, при присоединении галоидоводородных кислот к олефинам галоид становится к наименее гидрогенизированному атому углерода. Затем, однако, было найдено, что в присутствии некоторых веществ имеет местс [c.319]

    Все попытки заменить галоид в монохлоридах, получаемых прямым (Лорированием парафиновых углеводородов с прямой цепью, на гидроксильную или другие функциональные группы оказались с технической точки зрения совершенно неудовлетворительными. При этом особый интерес представляли бы такие высшие углеводороды, как когазин I, когазин И, или очищенные нефтяные фракции. Однако промышленное осуществление таких превращении практически невозможно вследствие происходящего при этом чрезвычайно энергичного образования олефинов. [c.532]

    Отсюда вытекает, что первичный атом водорода метильной группы реагирует при дегидрохлорировании более вяло, чем вторичный атом водорода метиленовой группы, Если, напротив, соединенный с галоидом атом углерода находится между двумя метиленовыми группами (— H2 H I H2—), то при прочих равных условиях олефин может образоваться легче, чем при группировке — H2 H I H3. В первом случае галоид находит у соседних атомов углерода равноценные по реакционной способности атомы водорода метиленовых групп во втором случае хотя и имеется больше атомов водорода, которые могут отщепиться, но из них первичные атомы менее активны. [c.538]

    Взаимодействие алкилмагнийгалогенидов с бромистым аллилом как метод получения 1-олефинов впервые было применено для синтеза 1-гек-сена и 5-метилгексена-1 [15]. С тех пор этот метод широко применяется для синтеза 1-олефинов, а также (при использовании замещенных галоидов аллилов) 2-олефинов. Если при синтезе исходить из аллилмагвийгало-генидов, то получаются очень плохие выходы. Впоследствии было показано, что как бромистый, так и хлористый аллилы дают RMgX лишь с выходом около 18% вследствие образования диаллила 131, 36]. Впрочем, при очень медленном добавлении эфирного раствора аллилбромида к магнию под эфирным слоем удается повысить выход аллилмагнийгало-генида до 70—82% (46, 120]. [c.409]

    Следует отметить, что, очевидно, в силу большей реакционной способности галоида в галоидных аллилах по сравнению с галоидными алкилами магнийорганический синтез олефинов, как правило, протекает с более высокими выходами, чем синтез парафинов. В этом последнем случае, например, реакционная смесь часто может стоять 2—3 недели и тем не менее выходы продукта остаются визкими. С аллилгалогенидами, однако, реакция обычно завершается за несколько часов при комнатной температуро. В работе, посвященной сравнительному изучению реакций этилмагнийбромида с различными галоидными алкилами, было показано, в частности, влияние двойной связи реакция с аллилбромидом шла намного быстрей, чем с пропилбромидом [131]. [c.409]

    Здесь изомеризация наблюдается даже в отсутствии олефинов или алкилгалоида. В этом процессе расходуется кислород. Имеющиеся данные указывают на окислительный механизм, при котором углеводород либо непосредственно атакуется под влиянием катализатора, либо через стадию промежуточного окисления самого катализатора. Воздействие на углеводород, по-видимому, приводит к образованию ионов карбония, необходимых для инициирования реакции изомеризации. Вероятная гипотеза, подтверждаемая некоторыми эксперимент 1льными доказательствами (при применении бромистого алюминия), заключается в том, что часть галоидалюминия атакуется кислородом, причем высвобождается галоид и образуется окись алюминия или, более вероятно, оксигалоид алюминия. Галоид реагирует с парафином, образуя алкилгалоид, который, как уже было показано, является наряду с галоидводородом инициатором цепной реакции изомеризации. Это подтверждается [45] тем, что бром как промотор может быть замещен кислородом. [c.19]


    Комплекс, образуюш ийся в результате действия воды на бромистый алюминий, освобожденный от всего несвязанного бромистого водорода, применялся в качестве катализатора для изомеризации н-бутана [81]. Найдено, что при контакте -бутана с катализатором, полученным при действии воды на бромистый алюминий нри 25° в течение 20 час., изомеризация -бутана идет, если молярное отношение вода бромистый алюминий составляет 1, 2 или 3. Если отношение равно четырем, при 25° изомеризация протекает лишь слегка, гораздо сильнее изомеризация проходит при 80° если отношение равно шести, изомеризация совсем не идет. В этих опытах не отмечалось заметного образования бромистого водорода. Результаты показывают, что катализатор изомеризации, образовавшийся при действии ьоды на бромистый алюминий неодинаков с катализатором, подобным бромистому алюминию, поскольку последний требует для изомеризации н-бутана присутствия бромистого водорода и таких индикаторов цепи, как следы олефинов или галоидал-килов. [c.20]

    С другой стороны, реакция присоединения галоида к олефинам сильно экзотермична. Так, нанример, при присоединении хлора к этилену высвобождается 41 ООО кал, JlS ° = —27,5 кал/молъ град. При температурах ниже 1000° AF° отрицательно, т. е. равновесие смещено в сторону продуктов присоединения [8]. [c.60]

    Для реакции замены галоида применяют также фториды свинца, ртути и кобальта [2, 18, 20]. Лучше всего их получать in situ реакцией соответствующей окиси с фтористым водородом, обычно для этого требуется применение аппарата под давлением. Наиболее высокая степень фторирования достигается при применении ртути, самая низкая — при применении марганца. Действие фторида ртути аналогично действию трехфтористой сурьмы. Лучше всего фторид ртути применять с алкилбро-мидамн, поскольку алкилхлориды реагируют очень медленно. Фториды свинца и марганца требуют проведения реакции при гораздо более высоких температурах и вообще являются неудовлетворительными агентами реакции обмена. Одпако они полезны при проведении реакции присоединения фтора к галоидированным олефинам и широко применяются для этой цели. [c.75]

    При применении катализаторов типа Фридель—Крафтса изомеризация парафинов, за исключением бутана, обычно сопровождается побочными реакциями, включающими и разрыв связи С—С. В процессе реакции синтезируются соединения, кипящие либо выше, либо ниже первоначального углеводорода. Реакции перераспределения, проходящие особенно с пентанами или более высокими парафинами, вызываются, очевидно, крекингом изо-парафиновых молекул, которые галоидом алюминия пе активируются [409]. По аналогии с реакциями, происходящими в авто-деструктивном алкилировапии, описываемый процесс является все-таки соединением деалкилирования (крекинг) и алкилирования [410], которые дают изопарафины более высокого либо более низкого молекулярного веса, чем первоначальный алкан. Возможно, проведением изомеризации под давлением водорода [411 — 413], в присутствии изобутана [412, 414], ароматики [412], нафтеновых углеводородов [412, 415—418] или гетероциклических углеводородов, таких как тиофен [419], можно свести к минимуму боковые реакции для нентанов и гексанов, но не для гептанов и более высоких парафинов. Устранение побочных реакций обычно сопровождается замедлением изомеризации, однако, прибавление олефинов уменьшает предохраняющее действие вышеприведенных агентов. Реакции изомеризации проходят через индукционный период в течение этого времени проходят незначительные реакции перераспределения [420, 421]. [c.117]

    Выходы продуктов реакции, получаемых в реакциях присоединения хлороформа и бромоформа к олефинам, заметно ниже, чем в реакциях с олефинами четыреххлористого и четырехбромистого углерода. Это различие вызвано, по-видимому, одной из двух причин либо тем, что связи в тригалоидалкилах менее чувствительны к воздействию на них, чем связи в тетрагалоидалкилах, либо неполнотой удаления ингибиторов из галоидов [4]. [c.234]

    В хлорной воде присоединение хлора идет достаточно медленно для того, чтобы почти количественно образовывался этиленхлоргидрин (см. стр. 370). Реакции олефинов с хлором и бромом в жидкой фазе идут обычно исключительно быстро 130], и применение растворителя, как правило, сказывается благоприятно. Этилен легко хлорируется при низких температурах в дихлорэтаповом растворе, как это применяется в промышленности. Хлориды элементов, образующих с хлором соединения высшей и низшей валентностей, как сурьма, железо, селен, являются эффективными катализаторами присоединения хлора к этилену. Присутствие полярных веществ можот катализировать присоединение галоидов например, реакция брома с этиленом в гааовой фазе сильно ускоряется, если стенки реактора покрыты стеариновой кислотой, но скорость реакции приближается к нулю, если стенки покрыты парафином [64]. Степень замещения хлором при реакции олефинов с хлором, как показано в табл. 3, поразительно велика [80]. Реакция замещения часто сопровождается перемещением двойной связи. [c.364]

    По Уитмору при реакции присоединения галоидоводородов к олефинам сначала протон присоединяется к олефину с образованием карбоний-иона, затем отрицательный ион галоида присоединяется к атому углерода с недостаточным количеством электронов. Так, для пропилена реакцию можно написать так  [c.367]

    Направление присоединения в этом примере следует общему правилу, впервые отмеченному Марковниковым в 1875 г., согласно которому галоидоводородная кислота присоединяется к несимметричному производному этилена таким образом, что галоид, как правило, становится у наименее гидрогенизированного углеродного атома, или, что то же самое, у атома, с которым соединено наибольшее число алкильных групп. Например, олефины-1 нормально дают вторичные галоидные производные R HX H3. [c.367]

    Присоединение галоидов. При обычных температурах хлор вступает с олефинами в реакцию присоединения. Так, по этому методу получают этилендихлорид (компонент выносителя в тетра-этилсвинцовых смесях) из этилена. Дальнейшее хлорирование приводит к образованию от трихлор- до гексахлорэтанов последние являются хорошими обезжиривающими растворителями. При несколько более высоких температурах имеют место реакции замещения. При хлорировании пропилена повышение температуры на 50° С ведет к получению аллилхлорида вместо пропилендихло-рида [261]. [c.580]

    Условия реакции. Галоидирование замещением в газовой фазе осуществить довольно сложно из-за трудностей отвода тепла (выделяется около 23—27 ккал при замещении одного атома водорода). Поэтому процесс проводят обычно с большим избытком углеводорода. С другой стороны, в газовой фазе при высокой температуре или боль-шом времени контакта интенсивно протекают побочные реакции с выделением НС1 и продуктов разложения олефинов. Олефины также образуются из полигалоидных соединений. Эти вторичные реакции можно частично устранить, разбавляя реакционную смесь парами воды, H l или N2 или проводя процесс в жидкой фазе в инертном по отношению к галоиду растворителе ( I4, H I3, S ). [c.266]

    Присоединение НС1 к олефинам протекает тем легче, чем больше молекулярный вес олефина реакция протекает по правилу Мар-ковникова, т. е. галоид присоединяется к атому углерода, имеющему наименьшее число водородных атомов. [c.279]

    В работе [17] было показано, что при конденсации в присутствии хлористого алюминия (температура от —1 до —10°С) грег-бутилхлорида с этиленом получается 1-хлор-3,3-диметилбутан с 75%-ным выходом. Таким образом, экспериментально подтвержде1НО, что первичной реакцией третичных алкилхлоридов с олефинами явл ет-ся. присоединение алкильной группы и галоида к олефину по месту двойной связи, т. е. справедлива третья стадия предложенного Шмерлингом механизма  [c.17]

    Естественно, что это обстоятельство способствовало росту пнтер са и к проблеме изомеризации также и -парафиновых углеводородов и, в частности, и-бутана в изобутан. В годы мировой войны указанный процесс получил и иромышленное осуществ.пение. Для изомеризации -бутана требуется более эффективный катализатор, нежели для олефинов. Таким катализатором служит система галогенид алюминия галоид-водородцая кислота с добавлением в качестве промотора кислорода или олефинов. [c.132]

    Галоид- и нитрозамещенпые ароматические карбоновые кислоты труднее реагируют с олефинами, причем реакция идет только в сторону образования эфиров, как и с бензойной кислотой. Папример, о-хлорбензойная кислота с пропиленом в присутствии ВРз в изопропилацетате дает изопропиловый эфир о-хлорбензойпой кислоты с выходом 14,5%. [c.9]

    Галоидолефины с галоидом при углероде, не связанном двойной связью, могут присоединять карбоновые кислоты в присутствии ВРз 0(С2Й5)2. Однако двойная связь у таких галоидолефи-нов обладает пониженной реакционной способностью по сравнению с соответствующими незамещенными олефинами. Так, бро- [c.14]

    Реакция галоидолефииов с органическими карбоновыми кислотами в литературе совершенно не описана. Как показали исследования в этой области С. В. Завгороднего [67а], галоидозамещенные олефины с галоидом не при двойной связи являются менее ре-акциошноспасобными, чем соответствующие, незамещенные олефины. Особенно малоактивной в отношении кислот является двойная связь галоидаллилов. [c.55]

    Представляло интерес ввести в молекулу изобутилена галоид, не нарушая его структуры, и изучить взаимодействие таокого галоид-олефина с кислотами в нрисутствии того же катализатора ВРз 0(С2Н5)2- С этой целью изучена реакция уксусной кислоты с хлористым изобутиленом [86]. Найдено, что введение хлора в изобутилен понижает способность его к полимеризации и к присоединению органических кислот в присутствии эфирата фтористого бора. Поэтому реакцию с этим олефином можно проводить даже при повышенной температуре. При нагревании, например, до 10— 80° С в течение 9,5 час. смеси хлористого изобутилена, уксусной кислоты и эфирата фтористого бора получается хлоризобутилацетат с выходом 29,5 7о от теоретического. [c.56]


Смотреть страницы где упоминается термин Олефины галоидов: [c.551]    [c.222]    [c.19]    [c.227]    [c.230]    [c.232]    [c.233]    [c.191]    [c.194]    [c.196]    [c.232]    [c.204]    [c.221]    [c.222]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.171 , c.178 , c.231 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.184 , c.328 , c.336 ]




ПОИСК





Смотрите так же термины и статьи:

Галоиды

галоидо



© 2025 chem21.info Реклама на сайте