Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные связи кремния

    Таким образом, расплавы солей, обладающих в твердом виде ионной связью, являются ионизированными жидкостями, ионизация которых не связана с силами гидратации или сольватации. Такие наиболее важные для электролиза расплавов соли, как га-логениды щелочных и щелочноземельных элементов, в твердом виде обладают ионной решеткой галогениды кремния, титана, алюминия, сурьмы — молекулярной галогениды кадмия, свинца и других металлов — смешанной. Соответствующие связи характерны и для расплавов при температурах электролиза. [c.466]


    У кварцевого стекла основная структурная единица — кремнекислородный тетраэдр. Тетраэдрическая координация кремния по кислороду обусловлена величиной отношения ионных радиусов кремния и кислорода, равной 0,29. Как известно, четверная координация катиона наиболее устойчива в пределах / к// о = 0,225—0,414. Расстояние Si—О равно О, 162 нм, а расстояние 0—0 — 0,265 нм. Угол внутри тетраэдра О—Si—О составляет примерно 109—110°. Связь Si—О преимущественно ковалентная, причем ири переходе от кристаллических веществ к стеклообразным степень ковалентности может повышаться с 50 до 80%. [c.201]

    В полимерных молекулах силикатов кремний и кислород основных цепей связаны между собой ковалентной связью, но часто кислород использует свою вторую валентность на образование ионной связи с катионом металла, и это придает соответствующий заряд аниону в [c.110]

    На рис. 1.7 представлены структуры ионов 8104 и 81207 . Для силикатов характерно соединение таких анионов в более сложные системы путем образования кислородного мостика между атомами кремния. В этом случае два кислородных атома связывают каждый данный атом кремния с двумя атомами кремния два других атома кислорода, приходящиеся на каждый атом кремния, связаны ионной связью с катионами металла и придают [c.28]

    Характер химических связей в соединениях кремния и германия обусловлен электроотрицательностью этих элементов. Действительно, располагаясь в центральной части таблицы Менделеева, описываемые элементы обладают средними значениями злектроотрицательностей (см. табл. 1). Таким образом, разность злектроотрицательностей атомов кремния или германия и атомов других элементов не может быть достаточна велика для образования ионных связей (см. 7). [c.92]

    В решетке ионных кристаллов — чисто ионная связь, т. е. связь, для которой полный перенос электронов от катиона к аниону скорее исключение, чем правило. Лишь для кристаллов типа хлорида натрия можно говорить о полном переносе заряда. Интеграл перекрывания одноэлектронных орбиталей ионов натрия и хлора оценивается значением —0,06. Можно сказать, что это чисто ионная связь. По отношению к этому же соединению сопоставление энергии электростатического взаимодействия с энергией ковалентного взаимодействия (непосредственно связанной с тем,-что называют поляризацией электронной оболочки) показывает, что вклад электростатического взаимодействия значительно больше и составляет (по Коулсону) для хлорида натрия 8,92 эВ, в то время как соответствующее значение для ковалентного взаимодействия 0,13 энергия отталкивания в этом случае равна —1,03 эВ (энергия, называемая нулевой , т. е. нулевая колебательная энергия, равна всего —0,08 эВ и ее часто вообще не принимают в расчет). К ионным кристаллам относятся кроме соединений типичных галогенов со щелочными металлами также и некоторые оксиды, в частности оксиды кальция и магния, в которых по экспериментальным данным имеются отрицательные двухзарядные ионы кислорода. В большинстве случаев ковалентный вклад больше. Кристаллы алмаза, кремния, германия, карборунда, серого олова содержат прочные ковалентные связи, так что любую часть этих веществ вполне и без всяких оговорок можно рассматривать кан молекулу макроскопических размеров. [c.281]


    Неметаллы (водород, сера, углерод, кремний, селен и др.) бывают восстановителями, как правило, при повышенной или очень высокой температуре. Отдавая электроны, неметаллы в большинстве случаев превращаются в сложные вещества с ковалентной и реже с ионной связью, Галогены, как правило, не отдают электроны, и кислородные соединения галогенов образуются с помощью реакций диспропорционирования или при электрохимическом окислении. [c.19]

    В кристаллическом же состоянии электрические моменты диполей отдельных связей (даже если они и существуют) взаимно скомпенсированы и суммарный собственный электрический момент диполя в кристалле равен нулю. Поэтому исследования поляризационных явлений в кристаллах дают мало информации о направленности связей и структуре. Однако и в кристаллическом состоянии эта направленность существует, что особенно ярко проявляется в кристаллах с преимущественно ковалентной связью (кремний, германий, 1пР, 2п5 и т. п.). Связи в таких кристаллах направлены к вершинам тетраэдра (см. рис. 3 и 4), поэтому подобные вещества часто называют тетраэдрическими фазами. Жесткая пространственная направленность ковалентных связей предопределяет образование рыхлых кристаллических структур с низкими координационными числами (как правило, не выше четырех). Для солеобразных и металлических кристаллов, в которых доминирует, соответственно, ионная и металлическая составляющая связи, характерны плотные и плотнейшие упаковки с координационными числами 6—8 для ионных и 8—12 для металлических решеток. Здесь значительную роль играют размеры взаимодействующих атомов, которые и определяют координационное число в кристаллических решетках. Однако при этом сохраняется определенная направленность химической связи, что проявляется в пространственной периодичности строения кристаллов. На существование электронных мостиков между взаимодействующими атомами указывают [c.82]

    Имеются разнообразные способы связывания органических групп с поверхностью кремнезема а) присоединение органических ионов б) образование связей 81—0—С и кремневых сложных эфиров в) образование связей кремний—углерод в крем-нийорганических группах. [c.566]

    Основные научные работы относятся к химии кремния. Исследовал системы, содержащие связь кремний — кислород (силикатные стекла, кремнийорганические соединения). Выявил (1935) функцию ионов щелочных металлов в стеклянных электродах. Внес (1950— [c.294]

    Реакционная способность соединений кремния зависигг от входящих в состав его атомов и ионов. Связи кремния с кислородом и галоидами отличаются больпюй термической стойкостью, что видно из сравнения значений энергии связей, которая равна для Si — F 143 тл/мол, для Si —С1 85,8 кал мол. Для Si — О 89 кал мол, для Si — С 57 кал мол и для С — С 58 кал мол [33]. Таким образом, силоксановая связь Si — О значительно прочнее связи С — С, благодаря чему силиконовые каучуки, имеющие общую формулу [c.320]

    В этом случае два кислородных атома связывают каждый данный атом кремния с двумя другими атомами кремния два других атома кислорода н 1 каждый атом кремния связаны ионной связью с катионами металла и придаюг соответствующий, заряд аниону в целом. Такие цепочки могут достигать значительных размеров и должны рассматриваться как гигантские анионы. В крн- [c.133]

    В слое, общем для октаэдрической и тетраэдрической сеток, 3 ионов связаны как с кремнием тетраэдров, так и с алюминием октаэдров, причем в этих позициях гидроксиды замещены кислородом. Гидроксиды, занимающие оставшуюся треть позиций в этом слое, располагаются так, что находятся прямо под дыркой гексагональной ячейки. Мехсплоскостное расстояние у каолинита с совершенной структурой составляет 7,14-10 см, у галлуазита, слои которого в отличие от каолинита разделены слоем молекул воды,— 10,1-10 см. [c.20]

    Связь кремний-—кислород отпичается высокой прочностью, достигающей 89 ккал моль (прочность связи С—С составляет около 58,6 ккалЬюль). Такая высокая прочность связи 51—О объясняется ее полярностью, благодаря которой ковалентная форма соединения приближается к форме ионной связи  [c.475]

    Октаэдры [510е] несколько деформированы четыре атома кислорода нз шести вокруг каждого атома кремния находятся на более близких расстояниях, чем два остальных. Предполагают, что для первых четырех вероятна ионная связь с наложенной на нее ковалентной связью, а для остальных двух — чисто ионная кристаллы стишовита имеют кубическую сингонию. [c.35]

    Общие химические свойства кремния и германия определяются положением этих элементов в таблице Менделеева. Кремний и германий находятся в четвертой группе таблицы, располагаясь соответственно в третьем и четвертом периодах. Во всех своих соединениях кремний и германий выступают как четырех- или двухвалентные элементы. При умеренных температурах (до 700 " К) и в особенности во влажных средах они образуют, как правило, четьЕрехвалентные соединения. Наоборот, нри высоких температурах (порядка 1300 " К) и в сухой атмосфере более типичными являются двухвалентные соединения рассматриваемых элементов. Химические связи в соединениях кремния и германия с элементами крайних групп таблицы Менделеева — полярные и обладают существенным дипольным моментом. Типичным для таких соединений является их взаимодействие с полярными молекулами других веществ и, в первую очередь, с молекулами воды. Соединения с чисто ионной связью для кремния и германия не известны. Следует, однако, иметь в виду, что некоторые полярные соединения рассматриваемых элементов могут частично диссоциировать на соответствующие положительные и отрицательные ионы. [c.92]


    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Особенность строения этого соединения, обладающего ромбической симметрией, - наличие шестичленного кольца А1815 018, составленного из шести кремневокислородных радикалов 810з. Кольцеобразная структура конгломерата этих радикалов, связанных ионной связью с железом и алюминием, обеспечивает высокую и стабильную адгезию. Кроме того, это соединение, относящееся к классу силикатов, обладает значительной стабильностью свойств и препятствует образованию интерметаллида, замедляя дальнейшую диффузию алюминия в стальную поверхность при получении покрытия и водорода при наводороживании в сероводородсодержащей среде. Легирование алюминиевого покрытия кремнием позволило снизить толщину наносимого слоя для обеспечения защиты в наводороживающих сероводородсодержащих средах по сравнению с покрытием без легирующих элементов. [c.66]

    Огромное различие трифторида алюминия и тетрафторида кремния не обусловлено тем не менее каким-либо значительным изменением типа связи — в обоих случаях связи имеют промежуточный характер между ярко выраженными ионными связями М+р- и нормальными ковалентными связями М р ,— а скорее является результатом изменения взаимного расположения атомов. Три летучих вещества существуют в виде отдельных молекул 31р4, РРз и 5Рв (не имеющих дипольных моментов) как в жидком и кристаллическом, так и в газообразном состояниях (рис. 9.4), и их плавление или испарение происходит лишь за счет теплового движения, в результате которого преодолеваются слабые меж- [c.248]

    НИТРИДЫ, соед. азота с металлами и более электроположительными, чем N, неметаллами. По типу хим. связи Н. делят на ионные, ковалентные и металлоподобные (ион-йо-ковалентно-металлические). Атомы азота в Н, могут принимать электроны партнера (образуется стабильная электронная конфигурация i p ) или отдавать электрон Партнеот (стабильная конфигурация sp ). В первом случае соед. обладают четко выраженной ионной связью, во втором-типично металлич., причем в обоих случаях им сопутствует определенная доля ковалентной составляющей. Ковалентная связь является основной в соединениях азота с бором и кремнием. [c.258]

    Окись хрома СГ2О3 имеет тот же тип решетки, что и а - А12О3, но у нее больший параметр. Термодинамически она менее устойчива, чем окись алюминия и двуокись кремния. В окислительной атмосфере СГ2О3 заметно испаряется при температурах выше 1100°С за счет доокисления ее до летучего окисла (данные Д.Каплана, Б.Коэна и др.). Неустойчивость окиси хрома является одной из причин низкой жаростойкости хрома в окислительной атмосфере при температурах выше 1200°С. Однако важно отметить, что стабильность окиси хрома существенно повышается при растворении в ней алюминия, редкоземельных металлов (РЭМ) и иттрия, которые отличаются более прочными ионными связями с кислородом. [c.14]

    На схематичном изображении реакции химического выветривания анортита (рис. 3.5) показан край кристалла анортита, находящийся в контакте с Н2СО3 из раствора, являющегося агентом выветривания. Природные поверхности кристаллов имеют участки с избытком электрического заряда, что вызвано дефектами кристаллической решетки (ряды атомов, немного смещенные со своих позиций) или ее повреждениями (разрыв связей). Области с избыточным зарядом преимущественно атакуются почвенными кислотами, в результате чего возникают выемки на поверхности минерала (рис. 3.6). Водородные ионы, образующиеся при диссоциации Н2СО3, гидратируют поверхность силиката. Ионные связи между Са и тетраэдрами 8104 легко разрываются, высвобождая Са в раствор. В результате образуются гидратированный силикат с дефицитом металла и раствор бикарбоната кальция (Са + + 2НСОз"). В ходе дальнейшей реакции в пределах тетраэдрической сетки могут разорваться связи, близкие к ковалентным. Тетраэдрическая сетка является особенно непрочной там, где алюминий заместил кремний, поскольку связь кислород—алюминий имеет скорее ионный характер. Продукт реакции, высвобождаемый в раствор — это [c.90]

    Силикаты отличаются от других неорганических солей характером соединения групп 8104 комплексы, состоящие из кремния и кислорода. В противоположность существованию углерод —углеродных связей у органических веществ в силикатах любая связь между двумя атомами кремния осуществляется всегда через кислородный атом. Кремний занимает промежуточное положение между фосфором, серой и хлором, которые образуют с кислородом свободные молекулы, и металлами (магнием и алюминием), образующими непрерывные ионные решетки. Кремний дает простую отдельно существующую в ортосили-катах группу 8104, а также более сложные группы, выражаемые формулами ВцО " , 81309""", 814013"""" и ЙбОи """"", которые можно рассматривать как комплексные кислотные радикалы, связанные атомами кремния так же, как в солях. Комплексные кремний-кислородные группы различаются своими пространственными формами. Последовательное удлинение молекулы можно проследить при постепенном уменьшении количества кислорода по отношению к кремнию. [c.485]

    Условия для существования примесных центров могут быть созданы различными способами, (а) Замещение атома основной решетки на элемент с нормально большей валентностью вызывает появление избыточного положительного заряда и связанного с ним электрона. Наиболее ярким примером примесей этого типа являются примеси в германии и кремнии. В ряду углерод, кремний и германий образуются ковалентные структуры с алмазной решеткой. Тепловое воздействие посредством фононного механизма может вызывать появление собственной проводимости в этих веществах. Однако если элемент с валентностью, которая нормально больше четырех, замещает атом в такой решетке, то плотность его электронного облака будет стремиться принять тетрагональное распределение, характерное для алмазной решетки. Чтобы была достигнута такая форма распределения электронного облака, элемент образует частично ионные связи, причем получается однократно заряженный ион совместно с квазисвободным электроном, расположенным около атома примеси. Энергия связи этого электрона меньше энергии связи в вакууме в К раз, где К — диэлектрическая постоянная среды. Следовательно, такие дефекты в основном ионизированы. Это характерно для полупроводников п-типа. (б) Замещение атома в решетке полуметалла на элемент с валентностью, нормально более низкой, производит эффект, обратный только что рассмотренному. Для того чтобы распределение электронного облака было близким к тетрагональному, элемент должен приобрести добавочный электрон, который он получает из кристаллической решетки вблизи от своего местоположения. В результате образуется положительная дырка, локализованная около атома примеси. Как и ранее, энергия связи положительных дырок станет меньше в К раз и, следовательно, дырки будут в основном ионизированы. Это типично для примесных дырочных полупроводников, (в) Вакансии в решетке и атомы или ионы в междуузлиях. Так как дефекты решетки подробно рассматриваются в другой главе этой книги (гл. 2), мы остановимся только на отдельных моментах. [c.171]

    Вы уже подробно ознакомились с химией всех элементов-неметаллов в гл. II (благородные газы), 12 (водород), 13 (галогены), 18 (халькогены), 21 (углерод), 25 (бор и кремний) и 30 (группа азота), а также в ряде разделов других глав. Напомним кратко, что для элементов-неметаллов характерны относительно высокие значения потенциала ионизации (энергии ионнзаци ), сравнительно небольшне атомные радиусы, относительно низкие значения АЯ си, наличие незанятых р-орбиталей в состоянии одноатомного газа (за исключением благородных газов) и способность образовывать ковалентные связи с другими неметаллами и ионные связи с металлами. Прн обычных лабораторных условиях большинство этих элементов существует в виде относительно небольших молекул, и при комнатной температуре скорости реакций неметаллов часто низки вследствие высоких энергий активации, необходимых для разрыва прочных [c.315]


Смотреть страницы где упоминается термин Ионные связи кремния: [c.309]    [c.343]    [c.60]    [c.168]    [c.292]    [c.103]    [c.327]    [c.79]    [c.164]    [c.131]    [c.378]    [c.164]    [c.11]    [c.100]    [c.79]    [c.132]    [c.350]    [c.62]    [c.661]    [c.104]    [c.229]    [c.362]    [c.392]    [c.275]   
Силивоны (1950) -- [ c.188 , c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь



© 2025 chem21.info Реклама на сайте