Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

анализ аминокислот получение производных

    В книге систематизированы как наиболее распространенные, так и менее известные методы газохроматографического анализа аминокислот, предусматривающие получение их летучих производных. Подробно рассмотрен каждый метод превращения аминокислот в летучие производные — форму, удобную для анализа — методом газо-жидкостной хроматографии. Много внимания уделено условиям анализа, жидким фазам и твердым носителям, дается критическая оценка возможных ошибок измерения. Обсуждаются результаты качественного и количественного анализа смесей аминокислот. Приводятся данные по точности количественного определения последних. [c.2]


    Первоначально радиохимические методы интенсивно применялись для количественного определения микро- и полумикроколичеств аминокислот путем получения производных по соответствующим аминогруппам. При ЭТОМ в качестве реагента использовался г-иодбензолсульфо- Ч-хлорид. С тех пор появилось много других реагентов и радиохимических методов анализа первичных и вторичных аминов путем превращения их в производные. Были определены даже третичные амины, которые не столь легко превратить в производные. Из радиореагентов наиболее широко применяют хлориды сульфо- и карбоновых кислот, уксусный ангидрид и динитрофторбензол. В настоящее время имеется несколько мак-роколичественных, а также различные микро- и полумикроколиче-ственные методы определения соединений, а также смесей меченых производных. [c.307]

    Количественный анализ аминокислот методом ГХ представляет несомненный интерес. Как правило, количественное определение аминокислотного состава пептида является одним из решающих моментов анализа последовательности. Поскольку при деградации крупного белка образуется большое число фрагментов, желательно затрачивать на анализ каждого из них минимальное количество времени и вещества. Привлечение в данном случае ГХ достаточно хорошо удовлетворяет этим условиям. Многочисленные исследования по ГХ аминокислот в конечном итоге направлены на решение этой задачи. Однако к действительно эффективному количественному методу предъявляются несоизмеримо более высокие требования, чем к качественному. Если учесть к тому же трудности получения и разделения производных аминокислот, станет ясно, почему до сих пор не разработан стандартный метод их количественного определения с помощью газового хроматографа. Основные трудности связаны, как подчеркивалось в разделе о получении производных, с полифункциональными аминокислотами. Метод, игнорирующий их идентификацию, может найти лишь ограниченное применение. Количественный анализ только простых аминокислот не может удовлетворять экспериментатора [40]. Вопрос о том, все ли аминокислоты, встречающиеся в белках, можно определять ГХ с достаточной точностью, все еще остается открытым. Здссь можно только вкратце рассмотреть имеющиеся условия и возможности. Проблемы, связанные с аппаратурой, необходимой для количественной ГХ, уже обсуждались ранее (см. стр. 302). [c.335]

    Методы получения производных аминокислот для газохроматографического анализа [c.270]

    Реакция сводится к получению производных уже разделенных зон образца. Обычно требуется тщательный подбор аппаратуры и реагентов. Этот метод был применен Стайном и Муром для анализа аминокислот, не имеющих окраски. Аминокислоты после выхода из колонки взаимодействуют с нингидрином, превращаясь в окрашенные соединения, способные поглощать свет на длине волны 570 нм и обнаруживаемые фотометром. Принципиальная схема установки для получения производных после колонки приведена на рис.3.1. [c.70]


    В последнее время наиболее широкое распространение среди различных К-замещенных производных аминокислот получили их К-ацилированные эфиры. Относительно высокая упругость паров, термическая стойкость и сравнительно легкая возможность количественной конверсии аминокислот разных классов определяют интерес к использованию эфиров К-ацилпроизводных для анализа аминокислот методом газо-жидкостной хроматографии. Однако следует отметить, что, как правило, непосредственное сравнение результатов хроматографического разделения К-ацил-производных аминокислот, полученных отдельными авторами, практически невозможно, поскольку это разделение проводилось для разных производных в несопоставимых условиях с использованием различных по эффективности разделительных колонок, применением отличных по строению и характеру стационарных растворителей и твердых носителей, причем количество неподвиж- [c.262]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Этот метод не приспособлен еще для количественного анализа, но, вероятно, степень превращения аминокислот, выраженная в процентах, в N-ацетил-н-амиловые производные имеет величину одного порядка для большинства аминокислот, поскольку сигнал детектора для производных, приготовленных стандартным методом, почти одинаков. Кроме того, величина сигнала составляет примерно 85% величины сигнала, полученного для растворов чистых производных. К сожалению, гистидин и аргинин этерифицируются при указанных условиях с плохим выходом, а ацетилирование не протекает гладко. Следовательно, вероятно, необходима усовершенствованная методика анализа этих аминокислот. Лучшие результаты получены при уменьшении продолжительности нагрева во время этерификации до 5 мин и при кипячении с обратным холодильником с уксусным ангидридом в течение 10 мин. Полученные производные обладают большими удерживаемыми объемами на второй колонке, чем лизин (см. фиг. 196). Вероятно, перед этерификацией имеет смысл превращать аргинин в орнитин, поскольку это производное имеет время удерживания на первой колонке всего лишь 33 мин. При указанных условиях производные триптофана не элюируются. [c.534]

    Златкис и др. [55] механизировали нингидриновый метод для автоматического анализа аминокислот, образующих летучие альдегиды. К этим аминокислотам относятся лейцин, изолейцин, норлейцин, валин, норвалин, а-амино-н-масляная кислота и аланин. При окислении глицина образуется формальдегид, который в условиях эксперимента полимеризуется и не может быть определен. Альдегиды, полученные из фенилаланина и метионина, требуют для элюирования более высокой температуры колонки, чем применяемая в этом методе. Тем не менее получают хорошее разделение изучаемых соединений при слабом размытии хвостов пиков, а производные лейцина и изолейцина отделяются друг от друга. [c.538]

    Из-за одновременного наличия в молекулах аминокислот карбоксильной и аминогруппы эти соединения отличаются малой летучестью, и чтобы образец был пригоден для газохроматографического анализа, необходимо модифицировать указанные функциональные группы. Метод получения производных должен быть таким, чтобы превращение полярных групп не сопровождалось разрушением структуры молекулы. В 1956 г. [c.69]

    Обработка белков и их производных, а также модельных соединений глюкозой и ацетальдегидом приводит к появлению коричневой окраски, причем скорость появления окраски пропорциональна температуре реакции и pH среды. Ацетальдегид реагирует приблизительно в 35 раз быстрее глюкозы в одних и тех же условиях. В реакции участвуют в первую очередь свободные аминогруппы и в гораздо меньшей степени гуанидиновые остатки амидные группы в эту реакцию не вступают. Полученные выводы были подтверждены при изучении реакций с этими альдегидами модельных соединений — аминокислот и простых аминов, а также полиглутаминовой кислоты и ее производных кроме того, проводился тщательный химический анализ изменения количества функциональных групп в белке. Защита свободных аминогрупп белка путем ацетилирования или превращения в гуанидиновые остатки приводила к тому, что полученные производные вообще не реагировали с ацетальдегидом или реагировали с ним лишь в незначительной степени, в результате чего коричневая окраска не возникала. В этой же работе были получены и другие доказательства на примере шерсти, которая, как оказалось, медленно — в течение нескольких часов при комнатной температуре — реагировала с ацетальдегидом, еще медленнее — с альдолем и значительно медленнее — с пропионовым альдегидом. Шерсть, которую предварительно подвергали ацетилированию, реагировала с формальдегидом в тем меньшей степени, чем больше была степень ацетилирования. [c.366]


    Разрыв глюкозидной связи (тип Б]), распад с миграцией Н (тип Л) или двух Н (тип О) указывают на тип основания в выделенном объекте. Для структурного и количественного анализов аминокислот, полученных гидролизом протеинов, перспективны Мез5 -производные, получаемые непосредственно из гидролизата. [c.245]

    С помощью различных реагентов амины и соответствующие исходные соединения легко превратить в амиды, которые можно без труда определить методом ГХ. При этом применяют как полярные, так и неполярные жидкие фазы. Амиды, образуемые из различных соединений, и соответствующие реагенты приведены в табл. 11.17. (Как правило, эти реагенты взаимодействуют также с группой ОН и другими группами, содержащими активный водород.) Ацетамиды и пропиоамиды получали до ГХ-анализа и во время него. Во втором из этих методов после ввода пробы или вместе с ней в колонку вводят ангидридный реагент и при повышенных температурах ГХ-колонки в ней почти мгновенно образуется соответствующее производное. При реакции амина с ангидридом или хлорангидридом легко образуется тригалогенацетамид. В отличие от трифторацетатов трифторацетамиды проявляют лишь слабые электронно-захватные свойства [32]. Поэтому высокая чувствительность электронно-захватного детектора при определении производных пирокатехинаминов обусловлена скорее 0-трифторацетильными, чем Ы-трифторацетильными группами. В анализе диаминов и аз-аминокислот, полученных из гомо- и сополимеров полиамидных смол, применяли трифторацетильные и триметилсилильные производные. Удобны и гептафторбутироамиды эти производные достаточно стабильны, проявляют хорошие электронно-захватные свойства и удобны для ГХ-анализа. [c.293]

    Так как свободные аминокислоты и пептиды недостаточно летучи, прежде чем начинать ГЖХ, их нужно превратить в летучие производные. Получение производных — это главная проблема, которая решена до сих пор еще не для всех пептидов. Часть трудностей возникает из-за того, что многие важные аминокислоты в пептидной цепи наряду с а-амино- и карбоксильными группами содержат ряд других функциональных групп. В результате получаются производные, сильно различающиеся по летучести кроме того, часто протекают осложняющие побочные реакции. Так как нет принципиальных отличий в методах получения летучих производных аминокислот и пептидов, можно ожидать, что результаты и опыт работы с производными аминокислот будут способствовать развитию аналогичных методов и для соответствующих пептидов. Пока недоступными для ГЖХ анализа являются пептиды, содержащие гистидин, аргинин или аминокислоты (подобно аспарагину и глутамину) с дополнительной функциональной амидной группой. В отличие от аминокислот при анализе пептидов исследователь встречается с особыми эффектами, вызываемыми более высокими молекулярными весами пептидов и связанной с этим пониженной летучестью. Чтобы компенсировать низкую летучесть, приходится пользоваться только такими защитными группами, которые очень устойчивы при высоких температурах, значительно увеличивают летучесть и легко доступны. Эти условия ограничивают применимость к пептидам большого числа защитных групп, используемых для аминокислот. [c.146]

    Вследствие относительно высокой упругости паров соединений, содержащих фтор [50], газо-жидкостная хроматография применяется для разделения К-ТФА-эфиров ди-, три- и тетрапептидов, Газо-хроматографический анализ различных летучих производных коротких пептидов проводился рядом автором [51—56]. Бименом и Веттером, например, осуществлено хроматографическое разделение N-aцeтилиpoвaнныx аминоспиртов и полиаминов, полученных из лейцил-аланина, глицил-фенилаланина, фе-нилаланил-глицина, лейцил-аланил-пролина и лейцил-аланил-глицил-лейцина с последующим масс-спектрометрическим определением последовательности аминокислот в пептидных цепях [53]. Однако наибольшего успеха удалось достигнуть при применении, как и в случае разделения аминокислот, К-трифторацетилирован-ных метиловых эфиров (рис. 9). Указанный метод, по-видимому, имеет ограниченное применение при исследовании структуры пептидов [64] и степени рацемизации при их синтезе [55]. [c.267]

    Остановимся па количественном определении аминокислот в виде наиболее часто применяемых их летучих производных, а именно сложных эфирах К-ТФА- и алкилсилилпроизводных аминокислот. Для получения количественной информации при газохроматографическом анализе аминокислот применяется метод внутреннего стандарта, основанный на добавлении к исследуемой смеси известного количества определенного вещества — внутреннего стандарта. На основании обработки хроматограмм ряда смесей с различным соотношением количеств внутреннего стандарта и определяемого компонента строят калибровочный график, выражающий зависимость отношения площадей пиков определяемого вещества и внутреннего стандарта от отношения их концентраций. При анализе многокомпонентных смесей с широким интервалом температур кипения иногда применяют несколько внутренних стандартов. [c.69]

    Метод (б) применяется в основном в тех случаях асимметрического синтеза, когда нет необходимости модифицировать образец перед газохроматографическим анализом. Тогда хиральный продукт реакции может быть изучен in situ, т. е, без выделения и очистки, а количество его может быть порядка г. При анализе нелетучих или высокололярных субстратов типа а -аминокислот необходимо превратить их в соответствующие производные (т.е. модифищрсжать). Иногда соответствующий метод модификации применяют для улучшения разделения, вводя подходящие функциональные группы. В принципе для получения производных можно использовать соответствующий хиральный агент [ метод (а)]. Однако несомненное преимущество метода (б) состоит в возможности использования и ахирального реагента. В обоих случаях при модификации необходимо убедиться в отсутствии рацемизации. [c.80]

    Получение производных аминокислот. В 0,1 см ацетонитрила растворяют 1 мг образца и добавляют 0,2 см TSIM. Смесь выдерживают 3 ч в закрытом сосуде при 60 °С, затем в зависимости от целей анализа добавляют [c.147]

    Husek P.-J. hromatogr., 1979, 72,468-470. Простой метод определения гистидина, триптофана, цистина и гомоцистина методом газовой хронатографии. (Описан метод получения производных с предварительной конденсацией аминокислот 1,3-дихлортетрафторацетоном, что сокращает время дериватизации до 15 мин. ГЖХ-анализ при программированном нагреве от 160 до 220°, НФ сЕ-ЗО на хромосорбе W.) [c.311]

    Адсорбционная хроматография аминокислот на неполярных неподвижных фазах, впервые предложенная в сороковых годах, в период после пятидесятых годов в какой-то степени утратила свое значение в связи с разработкой метода ионообменной хроматографии. Однако развитие высокоэффективной жидкостной хроматографии (ВЭЖХ) вновь пробудило интерес к этим фазам. Сравнивая методы ВЭЖХ, ионообменной и газовой хроматографии применительно к разделению аминокислот, следует иметь в виду, что автоматическое оборудование для ионообменной хроматографии дорого и пригодно только для анализа аминокислот, причем полное разделение 20 природных аминокислот занимает около 60 мин, для газохроматографического анализа необходима предварительная модификация аминокислот с целью получения их летучих производных, что возможно далеко не во всех случаях. Однако метод ВЭЖХ является весьма гибким и с помощью сравнительно недорого оборудования позволяет решать разнообразные проблемы, связанные с изучением различных веществ. В частности, 20 аминокислот можно разделить данным методом менее чем за 40 мин. В результате многочисленных систематических исследований сорбентов установлено, что химически связанные фазы являются наилучшими для анализа аминокислот и пептидов. [c.43]

    Вышеописанный метод анализа свободных аминокислот экономит время и труд исследователя и является более строгим, чем методы, основанные на получении производных аминокислот или на их экстракции, однако чувствительность его явно недостаточна для обнаружения небольших количеств аминокислот в биологических препаратах. Именно поэтому аминокислоты чаще всего определяют в виде их метилтиогидантоиновых [81], фенилтиогидантоиновых (ФТГ) [82], диметиламинонафталин-сульфонильных (дансильных, или ДНС) [83], 2,4-динитрофе-нильных (ДНФ) [84], 2,4,6-тринитробензолсульфонильных [c.51]

    Метод тонкослойной хроматографии (ТСХ), использованный Эдманом и Бэггом и описанный в их классической работе, посвященной автоматическому секвенатору [2], наиболее прост в экспериментальном отношении, не требует дорогого оборудования, но характеризуется невысокой чувствительностью (- 1 нмоль), тех удобна как для ручного, так и для автоматического определения последовательности однако это скорее качественный, чем количественный метод. Как бесспорное достоинство метода надо отметить возможность одновременного анализа нескольких образцов. Метод можно сделать полуколичественным, элюируя ФТГ с хроматографической пластинки, но обычно это не делается. При идентификации ФТГ-Arg и ФТГ-Н з ТСХ следует дополнять другими методами — ВЭЖХ тех же ФТГ-аминокислот, или аминокислотным анализом свободных аминокислот, полученных при обратном гидролизе ФТГ-аминокислот. Следует проводить обратный гидролиз при анализе только коротких пептидов и высокоэффективном определении последовательности аминокислот средних пептидов на секвенаторе с использованием наномольных количеств образца. Для анализа ФТГ-производных аминокислот с середины 60-х годов стала использоваться газожидкостная хроматография (ГЖХ). Этим методом можно быстро и количественно определить большинство, но не все с "ГГ-производные аминокислот. В неспособности ГЖХ обеспечить однозначную идентификацию ФТГ-производных всех 20 аминокислот заклю- [c.405]

    I3.2.L6. Анализ ФТГ-производных аминокислот в продуктах отщепления t 0 Эдману. При аиализе более чем I нмоль исходного пептида идентификация ФТГ-произвоД 1ых обычных аминокислот, полученных в ходе ручного или автоматического определения последовательности по Эдману, являек я однозначной. При работе с количествами >1 нмоль образца примеси, вносимые из секвенаторных реактивов, обычно не влияют на ВЭЖХ. [c.415]

    Из-за бетаиновой структуры аминокислоты относятся к неисиаряющимся соединениям, и поэтому их нельзя непосредственно исследовать методом газовой хроматографии. По аналогии с анализом нгирных кислот за прошедшие годы были поставлены опыты по разрушению бетаиновой структуры при помощи получения летучих производных. Химия проб в применении к аминокислотам имеет гораздо больше возможностей, чем в случае жирных кислот. Так, превращение аминокислот может осуществляться при реакции [c.270]


Смотреть страницы где упоминается термин анализ аминокислот получение производных: [c.293]    [c.13]    [c.87]    [c.103]    [c.132]    [c.137]    [c.153]    [c.285]    [c.101]    [c.267]    [c.533]    [c.534]    [c.406]    [c.96]    [c.69]    [c.75]    [c.78]    [c.412]    [c.450]    [c.180]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.87 , c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты получение

Получение US2 и его анализ



© 2025 chem21.info Реклама на сайте