Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулы правила отбора

    Трудно разрешимы. В тех случаях, когда структура в спектре существует, определенные переходы могут быть разрешены или запрещены правилами отбора для вращательных и колебательных переходов. Эти правила также основаны на приближении Борна — Оппенгеймера, предполагающем разделение волновых функций отдельных мод. В асимметричной молекуле не существует ограничений на возможные колебательные переходы, так что ее спектр соответственно достаточно сложен. В симметричной молекуле только колебательные уровни той же колебательной симметрии для частиц на верхнем и нижнем электронных уровнях могут сочетаться друг с другом. Это значит, что, хотя все симметричные колебания сочетаются друг с другом, для антисимметричных колебаний возможны лишь переходы с До = 0, 2, 4 и т. д. Вращательная структура в электронной спектроскопии особенно сложна, поскольку вращательный момент молекулы может взаимодействовать с электронным моментом, причем известно несколько типов и случаев такого взаимодействия. Более того, возможные для молекулы вращения зависят от ее формы (линейная, симметричный волчок и т. д.), так что нет смысла приводить здесь отдельные правила отбора для вращения. Достаточно одного известного примера для перехода линейной молекулы правила отбора записываются в виде АЛ = 0, 1. [c.43]


    Проявления симметрии в химии отмечались и изучались в течение целых столетий на примере кристаллографии - области науки, которая находится на границе между химией и физикой.] В ней, может быть, больше физики, если речь идет о морфологии кристалла и других его свойствах, но становится больше химии тогда, когда мы касаемся внутреннего строения кристалла и взаимодействия между его строительными единицами.] В дальнейшем рассмотрение колебаний молекул, правил отбора и других фундаментальных принципов всех спектральных методов также привело к тому, что концепция симметрии заняла в химии уникальное место также важны и ее практические применения. [c.12]

    Ртуть. На рис. 8.6 показана диаграмма энергетических уровней атома ртути с наблюдаемыми между ними переходами. Новой особенностью ртути является то, что в ее спектре наблюдаются синглет-триплетные переходы. Именно по этой причине фотохимики часто используют ртуть в качестве сенсибилизатора для установления заселенности триплетных состояний органических молекул. Правило отбора для AS нарушается потому, что из-за большой величины эффектов спин-орбитального взаимодействия S уже не является правильным квантовым числом. (В этом случае, строго говоря, неприменимы термины синглетный и триплетный , однако ими продолжают пользоваться условно.) Единственным правильным квантовым числом при большом спин-орбитальном взаимодействии является квантовое число J. При внимательном изучении рис. 8.6 можно обнаружить, что для А/ выполняется правило отбора 1 (/ — одноэлектронное квантовое число полного углового момента), а для А/ выполняется правило отбора О, 1. [c.176]

    У линейных молекул правила отбора колебательно-вращательных переходов следующие  [c.218]

    Следует отметить, что для каждой данной молекулы в инфракрасном спектре и в спектре комбинационного рассеяния проявляются только те колебания, которые разрешены правилами отбора этой молекулы. Правила отбора определяются симметрией молекулы, которая зависит от пространственного расположения ядер в молекулах. [c.10]

    Переход между двумя уровнями возможен только при изменении электрического дипольного момента системы или ее квадрупольного и т. п. момента, магнитного момента, поляризуемости, а также при возбуждении молекулы ударом электрона, атома, иона. Каждому из перечисленных процессов соответствует своя величина р. Наиболее часто в формуле (43.6) величина р — электрический дипольный момент системы. Тогда величина У " " называется дипольным моментом перехода. В дальнейшем, где специально не оговаривается, речь будет идти именно о спектрах, связанных с электрическим дп-польным моментом перехода (спектры поглощения и испускания). Если дипольный момент перехода равен нулю, электрическое дипольное излучение или поглощение невозможно, соответствующий переход запрещен. Из (43.6) следуют так называемые правила отбора, позволяющие предсказывать невозможность тех или иных переходов. [c.144]


    Вращательные спектры комбинационного рассеяния. Вращательный спектр комбинационного рассеяния тем более интенсивен, чем выше поляризуемость молекулы. Так как поляризуемость неполярных молекул выше, чем у полярных, у первых КР-спектр интенсивнее. Для вращательных КР-спектров формула (43.6) дает правило отбора, отличное от (46. И)  [c.155]

    Гомонуклеарные молекулы Hj, Oj, lj и т. п. не имеют дипольного момента, и при колебаниях он не появляется. Поэтому = О и эти молекулы неактивны в спектрах поглощения и испускания. Гетеронуклеарные молекулы типа НС1, НВг, КС1 и т. д., напротив, активны в этих спектрах, так как их дипольные моменты изменяются при колебаниях, и тем сильнее, чем более они полярны. Из вида волновых функций 1 5 ол следует правило отбора для гармонического осциллятора переходы с поглощением или испусканием света возможны только между соседними уровнями  [c.159]

    Колебательные спектры поглощения дают только те молекулы, у которых при колебаниях изменяется дипольный момент гомоядерные молекулы к таким молекулам не принадлежат. Правило отбора при гармонических колебаниях имеет вид Аи = 1 (знак, относится к поглощению энергии). [c.345]

    Известно, что для определения силовых полей молекул практически недостаточно одних спектроскопических данных, так как число колебательных частот молекулы всегда меньше числа силовых постоянных. Кроме того, часто из-за перекрывания полос в спектре возникают трудности с выделением полос отдельных колебаний. Использование колебательного кругового дихроизма помогает в решении этого вопроса, поскольку правила отбора могут существенно различаться для отдельных полос в области их перекрывания, например, г(С —Н) в -валине [c.213]

    Правила отбора и спектр многоатомной молекулы. Для многоатомной молекулы рассматривается активность в спектрах каждого из нормальных колебаний. Поэтому в отличие от двухатомных молекул здесь и неполярные молекулы типа СС или СОа имеют колебательные спектры поглощения. Активность данного колебания зависит от типа симметрии, к которому оно относится. [c.172]

    При переходе соблюдаются правила отбора, подобные упомянутым ранее, а в результате возникают полосатые спектры типа (см. рис. 1.22, б), располагающиеся, как правило, в видимой и ультрафиолетовой областях. Такие спектры следует называть электронно-колебательно-вращательными или сокращенно просто электронными. Таким образом, если в атоме данный электронный переход дает в спектре единственную линию, то в молекуле единственному электронному переходу может соответствовать множество линий, группирующихся в полосы. [c.253]

    Если электронно-колебательные или электронно-колебательновращательные взаимодействия не являются пренебрежимо малыми, то может происходить предиссоциация с нарушением электронных правил отбора. Ни в одном случае не было установлено точно, что предиссоциация становится возможной вследствие электронноколебательного взаимодействия. Однако имеется много примеров, когда предиссоциация становится возможной из-за взаимодействия вращательного движения с электронным. Такие случаи легко выявить по зависимости ширины линий от вращательных квантовых чисел. Для двухатомных и линейных многоатомных молекул правило отбора для такой гетерогенной предиссоциации записывается [c.186]

    Настоящее рассмотрение ограничивалось двухатомными молекулами с нулевыми компонентами электронного момента количества движения вдоль межъядерной оси (т. е. молекулами в -состояниях с квантовым числом Л = 0). Для этих молекул правило отбора АЙГ = + 1 строго выполняется. Однако для двухатомных молекул с А О переходы с АЛГ = О также разрешены и дают ()-ветвъ колебательно-вращательного спектра. Двухатомные молекулы с А =/= О можно рассматривать как симметричные волчки. Можно показать, что для таких молекул при ДА = 0, чему соответствуют инфракрасные колебательно-вращательные спектры, поскольку электронные состояния молекул остаются неизменными, выражение (7.67) должно быть заменено формулой Гёпля —Лондона [17—19]  [c.130]

    По мере увеличения числа атомов в молекулах правила отбора для предиссоциационных переходов между стабильными и нестабильными электронными состояниями должны смягчаться, что должно привести, как мы видели выше на примере метана и других насыщенных углеводородов, к эффективной диссоциации с большинства возбужденных электронно-колебательных уровней. [c.145]

    Здесь Аа =8 — — изменение спина А/ = ]т — Н — изменение вращательного квантового числа Ах. = —A — изменение проекции момента орбитального движения электронов на ось молекулы. Правила отбора для предиссоциационных переходов обсуждались на стр. 138 и в работе [4] [c.176]

    Наприм( р, если в молекуле имеет место инверсия, являющаяся операцией симметрия для каждой отдельной молекулы, то соблюдается правило отбора, согласно которому каждое нормальное колебание активно или в инфракрасном спектре, или в спектре комбинахщонного рассеяния, но никогда не может быть активно в обоих спектрах. В то же время,, если молекула полностью асимметрична, т. е. если к ней неприменима ни одна операция симметрии, все нормальные колебания активны как в инфракрасном спектре, так и в спектре комбинационного рассеяния. [c.300]


    Во многих случаях для облегчения анализа спектров может быть применен чрезвычайно полезный метод, основанный на зависимости частот колебаний от масс атомов. Замещение атомов их изотопами, в частности замещение атомов водорода в углеводородах атомами дейтерия, заметно изменяет инфракрасные спектры и спектры комбинационного рассеяния н позволяет получить ряд важных сведений. Поскольку силовые постояниые практически не зависят от изотопического состава, исследование спектров полностью дейтерированных углеводородов позволяет получить допо.инительиое число частот для вычисления силовых постоянных и поэтому применяется в ряде с-дучаев. Кроме того, частичное дейтерирование симметричных молекул уменьшает их симметрию, изменяет правила отбора и приводит к расщ(шлению вырожденных колебаний на невырожденные (т. е. к снятию вырождения с некоторых колебаний). Подобные изменения часто чрезвычайно важны для определения и отнесения основных частот исходных (недейтерированных) углеводородов. [c.301]

    На рис. 11,5/1, В и С представляют собой вибрационные уровни, соответствующие трем электронным состояниям молекулы. Квантовая механика показывает, что существует конечная вероятность перехода системы с какого-нибудь дискретного уровня системы термов В в область континуума системы термов А, или соответственно с дискретного уровня системы В в область континуума системы С, граничащую с этим уровнем. Переход с дискретного уровня одной системы уровней в сплошную область другой системы уровней возможен при выполнении правил отбора для электронных переходов (оба уровня должны обладать одинаковым значением полного квантового числа /, т. е. А/ = 0. Проекции орбитального момента количества движения электронов на линию, соединяющую ядра, должны отличаться не больше чем на единицу, т, е. ЛХ — 0 или 1, оба уровня должны принадлежать электронным состояниям одинаковой мультиплетности, т. е. Д5=0, они должны обладать одинаковой симметрией для отражения в начале координат. У молекул, состоящих из двух одинаковых ядер, оба уровня также должны обладать одинаковой симметрией в отношении ядер. Кроме [c.67]

    Как уже указывалось, для того чтобы процесс предиссоциации был возможен, необходимо соблюдение правил отбора. Эти правила могут быть нарушены путем помещения молекулы в электрическое или магнитное поле. Так, например, флюоресценция паров иода, возбужденных зеленой ртутной линией, может быть нотушена достаточно интенсивным магнитным полем. Как показывают опыты, а также характер потенциальных кривых, при этом происходит диссоциация молекулы иода на атомы. При отсутствии магнитного поля этот процесс запрещен правилами отбора. При наложении магнитного ноля в данном случае снимается правило, требующее постоянства момента количества движения (Д/=0), и вследствие этого становится возможной предиссоциация. Такое явление получило название магнитного тушения флюоресценции. [c.70]

    Важным примером запрещенного перехода является возбуждение на л -орбиталь несвязывающего 2р-электрона кислорода в молекулах, содержащих карбонильную группу (С=0). Это возбуждение принято называть п -> тс -переходом. Правила отбора, запрещающие этот переход, не являются вполне строгими, потому что в действительности для него все же наблюдается полоса поглощения. Но интенсивность такой полосы существенно уменьщена, так как она соответствует запрещенному переходу в такой ситуации е обычно принимает значения от 10 до 10 . [c.594]

    Ауз = 5 и 7 м соответственно, для Sa Ava = 23 см" при переходе от газа к жидкости, а для Sea — 36 см". Как видно, чем меньше у сходственных молекул частота, т. е. упругость связи, тем сильнее ослабляет связь ван-дер-ваальсово взаимодействие. Изменяется при взаимодейств 1и и вероятность переходов, т. е. интенсивность полос. Нарушение первичной симметрии молекулы в результате взаимодействия ослабляет строгость правил отбора, в спектрах могут проявляться запрещенные частоты. В кристаллах поле симметрично распределенных зарядов может привести к снятию вырождения, например, в кристалле СОа снимается вырождение деформационного колебания V2 = 667 СМ и проявляются две частоты va 660 и 653 см". В спектре кристаллов могут проявляться также колебания решетки. Спектр молекул, изолированных в матрице (область менее 200—300 см" ), может отличаться от спектра свободных молекул, благодаря взаимодействию между ними и кристаллом матрицы, особенно для сильно полярных молекул. [c.178]

    При поглощении кванта ИК-излучения происходит переход из. состояния Ей в состояние Ег + (рис. 74, а). Для гармонического осщмлятора правила отбора допускают только переходы Ди=1. Относительное число молекул, находящихся на каждом из колебательных уровней в условиях теплового равновесия, определяется законом Больцмана и пропорционально величине где [c.200]

    Так как кинетическая энергия не квантуется, то при переходах с поглощением энергии E>Dq эта энергия может принимать уже не строго определенные, а любые значения. В ИК-спектре этому соответствует переход от линейчатого поглощения к сплошному. По частоте, соответствующей границе сплошного поглощения, легко определить энергию диссоциации молекулы. Важное правило отбора в ИК-спектрах связано с разрещенностью переходов между кслебательными уровнями при поглощении ИК-излучения. Активны в ИК-спектрах только те колебания, которые сопровождаются смещением центра электрических зарядов молекулы, т. е. изменением дппольного момента. Поэтому колебания таких молекул, как СО, N0, ИС1, проявляются в ИК-спектрах, а колебания симметричных молекул Иг, N2, I2 не проявляются. [c.201]

    Спектры кристаллических углеводородов в отношении числа и положения интенсивных полос в большинстве случаев близки к спектрам жидкостей, однако довольно часты и значительные различия между ними. Например, кристаллизация к-алканов от С и выше всегда сопровождается существенными изменениями в спектрах, как это видно на рис. 25 и 31а. Такие изменения спектров связаны с поворотной изомерией в жидкой фазе существуют в равновесии два или рюсколько изомеров, а в твердой только один, например [5, 470] Иногда в спектрах кристаллов наблюдаются новые слабые полосы, например [66, 338], и расщепляются сливающиеся в жидкости полосы и группы полос [338, 438, 441]. Для симметричных молекул в связи с наличием специальных правил отбора для кристаллов ряд более или мепее слабых полос может наблюдаться в спектре жидком и, но не в кристалле [252, 277] например, запрещенные полосы 852 и 1180 см жидкого бензола отсутствуют в спект) кристаллического бензола [253, 3381, как и в спектре паров. [c.488]

    Возможны переходы (рис. IV. Е-=К(1->А 4, б) с частотами v+ = /<(3 + т])//i и v = ((3—т))/7г, из которых непосредственно определяется как константа квадрупольного взаимодействия e qQ = 4K, так и параметр асимметрии т]. Если параметр 11 достаточно велик, то правило отбора Дт= 1 нарушается и возможен также переход с частотой Усг = 2/Ст]//г. В аксиально-симметричном поле (т1 = = 0) уровни Е+ и Е- вырождены (Е+ = К), и возможен только один переход с частотой у = ЗК1к (рис. А,а). Асимметрия градиента электрического поля на ядре 5 имеет место, например, в молекуле СНзЗН, где валентный угол С5Н =92°. [c.96]

    Строгого правила отбора для До колебательных переходов, как и в оптической электронной спектроскопии, в фотоэлектронных спектрах нет, и часто наблюдается хорошо развитая колебательная структура полос. Она видна, например, на рис. 1.5, где приведен фотоэлектронный спектр бромоводорода. Соответствующий более низкому значению энергии I дублет интенсивных узких пиков без колебательной структуры относится к ионизации с несвязывающей орбитали Вг и обусловлен спин-орбитальной связью (см. гл. VI 2.2). Полоса при более высоких энергиях / относится к ионизации со связывающей орбитали и расстояния между пиками ее структуры соответствуют частоте валентного колебания v(H—Вг) ионизованной молекулы. В ФЭС также справедлив принцип Франка —Кон дон а, т. е. наиболее вероятны вертикальные переходы. [c.145]

    Правила отбора (см. ч. I, гл. XIII) запрещают электронные переходы между -уровнями свободного атома или иона, т. е. - -> -переходы, поскольку -АО имеют центр симметрии. В электронных спектрах центросимметричных ионов и молекул запрещены переходы типа и и- и, разрешены только переходы д и. [c.209]

    Молекулярные орбитали (МО) делятся на а-, я- и и-орбитали. <т-МО — симметричная относительно оси, связывающей атомы в молекуле. я-МО—несимметричная относительно оси молекулы п — несвязЫ вающая. Несвязывающая молекулярная орбиталь обычно наблюдается у тех молекул, у которых имеется сильно электроотрицательная группа атомов или атом. Энергия таких электронов близка к энергии соответствующей атомной орбитали. При поглощении молекулой кванта электромагнитного излучения происходит электронный переход со связывающей на незанятую разрыхляющую (а - или я -МО) или с несвязывающей на незанятую разрыхляющую (а - или я -МО) (рис. 14). Правило отбора соблюдается и в этом случае. [c.27]


Смотреть страницы где упоминается термин Молекулы правила отбора: [c.286]    [c.38]    [c.58]    [c.160]    [c.50]    [c.153]    [c.154]    [c.162]    [c.166]    [c.201]    [c.487]    [c.50]    [c.153]    [c.154]    [c.162]    [c.166]    [c.165]   
Количественная молекулярная спектроскопия и излучательная способность газов (1963) -- [ c.123 , c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Правила отбора



© 2024 chem21.info Реклама на сайте