Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризаторы в производстве

    На рис. 1У-13 показан реактор-полимеризатор производства поливинилового спирта, в котором обеспечивается теплообмен через рубашку и трубчатые мешалки. Подача и отвод хладоагента регулируются золотниковым устройством, смонтированным на валу выше уплотнительных устройств. Разгерметизация системы охлаждения крайне [c.126]

    IV-13. Реактор-полимеризатор производства поливинилового спирта  [c.126]


    В производстве полимерных материалов максимальная продолжительность работы между чистками полимеризаторов составляет всего лишь 144 ч, оборудования узла концентрации в производстве сополимера—110 ч, теплообменной аппаратуры в производстве полиэтилена — 275 ч. Очистка аппаратуры, особенно в отсутствие соответствующих средств локализации, требует затрат тяжелого неквалифицированного труда и в ряде случаев приводит к авариям и несчастным случаям. [c.294]

    Гидродинамические методы очистки аппаратуры от твердых осадков основаны на использовании ударной силы струи воды, направляемой под высоким давлением и необходимым углом на очищаемую поверхность. Такие методы применяют для очистки полимеризаторов, ксантогенаторов, реакторов, сборников, кипятильников, теплообменников, отстойников, ректификационных колонн и другого технологического оборудования в производствах синтетического каучука, полиэтилена, полихлорвиниловой смолы и др. При такой очистке с поверхности снимаются твердые и ломкие продукты, соли жесткости, продукты полимеризации и осмоления, а, также рыхлые и аморфные осадки. [c.299]

    Крупная авария произошла в производстве полиизобутилена. В результате резкого повышения давления в полимеризаторе нарушилась его герметизация, что привело к выбросу этилена и изобутилена в производственное помещение и последующему взрыву образовавшейся взрывоопасной газовоздушной смеси. При взрыве [c.339]

    Отходы производства каучука и их утилизация. В производстве дивинилстирольных каучуков, вследствие недостаточной устойчивости латексов в полимеризаторах, отгонных колоннах, сборниках латексных емкостей, а также в трубопроводах образуется каучукоподобный осадок, так называемый коагулюм . Количество его колеблется в пределах 2—4% вырабатываемого каучука. [c.249]

    В настоящее время наибольшее распространение в производстве шин и других резиновых изделий получили поли-изопреновый и бутадиенстирольный каучуки. Совместная полимеризация осуществляется в водной среде при температуре от 5 до 50°С в батарее последовательно соединенных между собой полимеризаторов. Приготовленная заранее смесь дивинила со стиролом смешивается с водой и эмульгатором (например, канифольное мыло) в аппарате предварительного эмульгирования. Готовая эмульсия вместе с раствором инициатора и регулятора непрерывно закачивается в первый по ходу полимеризатор. Из 12 аппаратов батареи всегда работают 11. Каждый полимеризатор, изготовленный из биметалла или покрытый кислотоупорной эмалью, вместимостью 12—20 м снабжен мешалкой (рис. 99). Мешалка может давать от 50 до 1450 об/мин. Полимеризатор имеет водяную рубашку, куда подается горячая (во время пуска) или холодная вода (для отвода теплоты реакции). Процесс осуществляется в режиме полного смешения и при непрерывном перетекании всей смеси с добавкой регулятора через всю батарею полимеризаторов с такой скоростью, что за время протекания полимеризуется примерно 58—60% смеси углеводородов. [c.225]


    При промышленном производстве полимеризация изопрена осу-ш ествляется в растворе бензола, гептана или циклогексана. Первоначально приготовляется раствор комплексного катализатора в бензоле, затем добавляется изопрен в таком количестве, чтобы его содержание в растворе составляло 17—18%. Смесь направляется в полимеризатор. В непрерывно действующих аппаратах полимеризация проводится при 30° С при перемешивании. Для того чтобы выделить образовавшийся каучук из раствора, добавляют смесь метилового и изопропилового спиртов. Если в качестве катализатора применяется литий, то полимеризацию ведут при 46—60° С. Выделенный полиизопрен обрабатывают для получения сырого каучука как исходного материала для производства различных резиновых изделий. [c.334]

    В интенсифицированном способе производства блочного ПС полимеризация мономера осуществляется сначала до степени конверсии 0,7—0,8 в двух полимеризаторах смешения, а затем завершается до степени конверсии 0,95 в реакторе вытеснения колонного типа. [c.393]

    Водная фаза из аппарата 1 и углеводородная фаза из аппарата 2 поступают в смеситель 3, где эмульгируются. Полученная эмульсия охлаждается в холодильнике 13 до температуры 15°С и подается в первый полимеризатор 4, батареи кз 12 аппаратов. Перед первым полимеризатором в эмульсию вводятся заранее приготовленные растворы инициатора, активатора и регулятора полимеризации из емкостей, в которых они хранились в атмосфере азота. На выходе из последнего полимеризатора 4x2, где степень конверсии достигает 0,6 долей единиц, в латекс вводится стоппер после чего он, пройдя фильтр 5 для отделения твердых частиц, направляется на дегазацию. В колонне 6 из латекса удаляется бутадиен, который через сепаратор 7 и систему очистки 11 возвращается на сополимеризацию. В колонне 8 отгоняется стирол, также возвращаемый через сепаратор 9 и систему ректификации 12 в цикл. Освобожденный от изомеров латекс собирается в емкости 10 и после введения в него антиоксидантов подается на вторую стадию производства — выделение СКС из латекса. [c.432]

    На рис. 20.3 представлена технологическая схема производства изопренового каучука СКИ-3. Раствор изопрена в изопен-тане охлаждается в холодильнике 1, орошаемом жидким пропаном, и подается в смеситель 2, куда дозируется каталитический комплекс. Полученная смесь последовательно проходит через батарею из шести полимеризаторов З1—За, в последнем из которых обеспечивается конверсия изопрена 0,95 долей единиц при содержании полимера в растворе до 15%. Из полимеризатора 3 полимеризат поступает в смеситель 5, куда из аппа- [c.436]

    Процесс эмульсионной полимеризации в производстве дивинил-стирольного каучука обычно осуществляют способом непрерывной полимеризации на установке, состоящей из 12 полимеризаторов, соединенных переточными трубами. Избыточное рабочее давление в полимеризаторе составляет около 4 ат. Для перемешивания эмульсии он снабжен мешалкой, приводимой во вращение вертикальным электромотором с редуктором, укрепленным на крышке полимеризатора. [c.39]

Рис. XII.26. Технологическая схема производства полистирола эмульсионным способом. 2 — эмульгатор 2 — сборник для эмульсии 3 — насос дозировочный 4 — подогреватель эмульсии 5 — полимеризатор 6 — баллон со сжатым азотом 7 — сборник для гидроперекиси 8 — сборник для стирола 9, 11 — весовые мерники ю — аппарат для варки эмульгатора 12 — емкость для растворения щелочей 13 — весы для щелочи И — коагулятор 15 — сборник для латекса 16 — фильтр масляный п — вентилятор 18 — конденсационный горшок 19 — калорифер 20 — весы для сульфита натрия 21 — емкость для растворения сульфита 23 — весовой мерник для раствора сульфита 23 — сборник для эмульгатора 24 — сборник водной фазы 25 — сборник обессоленной воды 26 — центрифуга 27 — норий 28 —сушилка полистирола 29, 30 — фильтры 31 — циклон 32 — шнек 33 — бункер для полистирола 34 — автоматические весы. Рис. XII.26. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/311590">полистирола эмульсионным</a> способом. 2 — эмульгатор 2 — сборник для эмульсии 3 — <a href="/info/13896">насос дозировочный</a> 4 — подогреватель эмульсии 5 — полимеризатор 6 — баллон со <a href="/info/390414">сжатым азотом</a> 7 — сборник для гидроперекиси 8 — сборник для стирола 9, 11 — весовые мерники ю — аппарат для варки эмульгатора 12 — емкость для <a href="/info/153497">растворения щелочей</a> 13 — весы для щелочи И — коагулятор 15 — сборник для латекса 16 — <a href="/info/135780">фильтр масляный</a> п — вентилятор 18 — <a href="/info/94255">конденсационный горшок</a> 19 — калорифер 20 — весы для сульфита натрия 21 — емкость для растворения сульфита 23 — весовой мерник для раствора сульфита 23 — сборник для эмульгатора 24 — сборник <a href="/info/1899027">водной фазы</a> 25 — сборник обессоленной воды 26 — центрифуга 27 — норий 28 —сушилка полистирола 29, 30 — фильтры 31 — циклон 32 — шнек 33 — бункер для полистирола 34 — автоматические весы.
    Большой проблемой в производстве высокомолекулярного ПИБ является устранение обрастания стенок полимеризатора слоем полимера, которое затрудняет непрерывное ведение процесса и приводит к необходимости остановки процесса для чистки полимеризатора. Таким образом, реализуется практически периодический процесс с циклом в лучшем случае до нескольких суток. Целесообразно иметь два и ти несколько параллельно включенных полимеризаторов для осуществления непрерывной технологии производства ПИБ. [c.294]

    Как отмечалось, проблемой в производстве высокомолекулярного ПИБ является устранение брызг готового продукта и обрастания стенок полимеризатора слоем полимера, которое затрудняет непрерывное ведение процесса и приводит к необходимости остановки производства для чистки оборудования. [c.306]

    Рассмотренные способы получения полимеров изобутилена при всей простоте и оригинальности также не являются оптимальными с точки зрения реализации в промышленном производстве. В частности, невелика производительность аппаратов, при этом рассмотренные фундаментальные закономерности быстрой полимеризации изобутилена четко показывают (в частности, существование Я р), что масштабный перенос, широко используемый в химической технологии для обычных объемных аппаратов-полимеризаторов, не применим при разработке новых трубчатых реакторов при реализации быстрых катионных реакций, в основе действия которых лежит факт локализации процесса в небольших реакционных объемах. [c.308]


    Другой тип каучука, для производства которого требуется значительный расход холода, бутилкаучук — продукт совместной полимеризации изобутилена с изопреном. Протекает эта реакция при температуре —100° С в специальных полимеризаторах. Хладагент испаряется при температуре —110° С в межтрубном пространстве, а шихта и катализаторный раствор поступают в полимеризатор при температурах —98° С и —93° С, где охлаждаются до —100° С. [c.264]

    Обычно каталитический комплекс для производства tj -1,4-полибутадиена получают при подаче отдельных компонентов комплекса непосредственно в полимеризаторы. [c.170]

    Процесс полимеризации бутадиена экзотермичен, тепловой эффект реакции составляет 72 кДж/моль. Полимеризацию проводят непрерывно в батарее из четырех-шести последовательно включенных полимеризаторов (называемых также реакторами-или автоклавами), таких же, как и в производстве СКИ-3. [c.171]

    В НИИМСК была разработана новая каталитическая система для производства бутилкаучука, состоящая из комплексного катализатора на основе алюминийорганического соединения в качестве растворителя применяется изопентан. Аппаратурное оформление процесса производства бутилкаучука в растворе изопентана аналогично получению бутилкаучука в среде метилхлорида (за исключением полимеризатора). Однако имеются различия в режиме полимеризации реакцию полимеризации проводят при более высоких температурах (от —78 до —85°С), что облегчает регулирование процесса полимеризации. [c.202]

    Рнс. 15.5. Полимеризатор с рампой мешалкой, применяющийся в производстве эмульсионных каучуков  [c.224]

    Полимеризация по железо-трилон-ронгалитовому рецепту обеспечивает высокую скорость процесса и позволяет получать каучуки высокого качества. На качество каучуков влияют также применение мономеров высокой концентрации, применение активных гидропероксидов, а также хранение растворов в атмосфере азота, особенно для низкотемпературного процесса. В результате внедрения железо-трилон-ронгалитового рецепта полимеризации значительно возросла выработка каучука на существующем оборудовании. Съем с 1 м реакционного объема полимеризатора составляет 20 кг/ч. Это позволяет увеличить мощности заводов СК по производству СК(М)С. [c.224]

    Процесс производства полиэтилена при низком давлении осуществляется в атмосфере азота, так как катализаторный комплекс легко разлагается при действии влаги и кислорода воздуха. Основной аппарат — полимеризатор представляет собой вертите [c.78]

    Анализ полей скоростей в полимеризаторе производства СКЭПТ показал, гго используемая тихоходная мешалка не может обеспечить необходимой эффективности перемешивагшя, в результате формируются сильно неоднородные поля температуры и концентраций компонентов, приводяпще к неоднородности получаемого продукта. Поэтому было рекомендовано увеличить частоту вращения мешалки, одновременно уменьшив диаметр лопастей. Последнее необходимо для того, чтобы не возросла потребляемая перемешивающим устройством мощность. Расчеты показали, что новая [c.85]

    В связи с этим появляется возможность анализа влияния различных конструктивных особенностей и режимных параметров на распределение диспергируемого газа по сечению и высоте аппарата. На основе такого анализа применительно к полимеризатору производства СКЭПТ нами было рекомендовано изменить конструкцию диспергирующего устройства, установив два кольца с большим числом отверстий, а также максиманьно увеличить расход подаваемой газовой смеси мономеров, верхний предел которого лимитируется возникающим брызгоуносом. [c.87]

    Некоторые аварии в производстве винилхлорнда связаны с загазованностью помещений ацетиленом, винилхлоридом, хлористым водородом. Аварийные выбросы в атмосферу производственных помещений взрывоопасных и токсичных газов чаще всего происходят в результате колебаний давления в системе и разрушения самодельных предохранительных мембран, имеющих большой диапазон срабатывания и не обеспеченных отводными трубами. Загазованность иногда создается разгерметизацией сальниковой арматуры, трубопроводов, полимеризаторов и другой аппаратуры, что объясняется низким качеством их изготовления и ремонта. Следует значительно улучшить качество изготовления и монтажа оборудования трубопроводов и арматуры, тщательно подбирать для них коррозионно-стойкие материалы и прежде всего разработать более производительные и надежные смесители ацетилена с хлористым водородом, контактные аппараты, компрессоры ацетилена и реак ционного газа, тепло- и массообменную аппаратуру для газовыде ления и ректификации пожаро- и взрывоопасных смесей под высо кйм давлением. [c.71]

    Лубрикатор представляет собой автоматический прибор, предназначенный для подачи смазки под давлением на трущиеся поверхности. В производство полиэтилена входит 44 технологических аппарата шести наименований (про-мыватели, скрубберы, теплообменники, полимеризаторы, холодильники, циклоны). Из этого числа 24 аппарата (полимеризаторы, теплообменники и др.) работают нормально. Промывателн, представляющие собой резервуары с переме- [c.18]

    Реакторы представляют собой аппараты предназначенные для проведения разнообразных техно логических процессов, протекаюндих в различных средах с широким диапазоном температур и давлений, В зави симости от проводимых в них химических реакций, кон струкций и типов реакторы в различных производствах носят названия контактных аппаратов, конверторов полимеризаторов, сульфураторов, хлораторов, нитрато ров, реакционных колонн, автоклавов и др. [c.91]

    Ежедневные работы внутри аппаратов, обусловленные ведением технологического процесса, разрешается проводить с соблюдением мер безопасностп, предусмотренных производственной инструкцией без оформления наряда-допуска. Например, выгрузка кокса из коксовых кубов, очистка полимеризаторов при периодическом процессе производства и т. п. [c.239]

    ПРОЦЕССЫ ПЕРЕНОСА И ХИМИЧЕСКОГО ПРЕВРАЩЕНИЯ в ПОЛИМЕРИЗАТОРАХ ПРИ ПРОИЗВОДСТВЕ СИНТЕТИЧЕСИХ КАУЧУКОВ [c.78]

    Существующие методики технологического расчета полимеризаторов для производства синтетических каучуков базируются большей частью на знании химической кинетики, которая иссле о ется в сосудах лабораторного масштаба. При этом, как правило, игнорируется влияш1е явлений тепломассопереноса и гидродинамики, па смотря на то, что в промышленных реакторах эти явлеш1я оказывают существенное влияние па наблюдаемую кинетику. Поэтому целесообразно развитие подхода, в рамках которого учитывается, что макрокш1етика процесса полимеризации в промышленном реакторе рассматривается как результат совместного влияния химической кинетики и кинетики переноса с учетом гидродинамических условий и структуры потоков. При этом параметрами математических моделей выступают физические и [c.78]

    При проведении процессов полимеризации теплоотвод за счет кипения реакционной смеси используется в производстве этилен-пропиленового синтетического каучука [5,9], 1шзкомолекулярного полиизобутилена [18], полистирола [17]. Согласно [19], в производстве синтетических каучуков одним из наиболее эффективных способов отвода теплоты из реакционного объема является испарение части компонентов реакционной смеси с последующей конденсацией, их в выносном холодильнике и возвращением в полимеризатор. Если удается избежать обильного образования пены (как например, при получении этилен-про1шленового синтетического каучука в среде жидкого пропилена) или удается подавить пенообразование путем введения пеногасителей, то отвод теплоты за счет испарения представляется весьма перспективным. [c.82]

    В процессе полимеризации с некалем наблюдается образование значительных количеств коагулюма, что свидетельствует о низкой стабильности полимеризационной системы. Это приводит, к снижению производительности оборудования, (ПОБЫщенным потерям исходных продуктов (особенно мономеров) в производстве и требует остановки полимеризаторов а чистку. [c.144]

    Технологическая схема промышленного производства ПЭ газофазным методом фирмы Юниол Карбайд (США) приведена на рис. 3. 5 (см. с. 113). Процесс полимеризации этилена проводится в полимеризаторе в кипящем слое иод давлением [c.112]

    В современном производстве полимеры и олигомеры бутиленов получают по непрерывной технологии с использованием объемных реакторов-полимеризаторов смешения достаточно сложной конструкции с рабочим объемом 1,5-30 м [1,2]. Обязательным считается наличие интенсивно развитой термостатирующей поверхности (несколько внутреньшх теплообменников в сочетании с внешним теплосъемом жидким этиленом или аммиаком), а также сильного перемешивающего устройства, обеспечивающего линейные скорости 1-10 м/с движения реакционной массы. [c.290]

    В 1981 г. принят в эксплуатацию новый способ производства бутилкаучука с ММ = 20 000 0 ООО (по Штаудингеру), где в качестве основного реактора-полимеризатора используется малогабаритный трубчатый турбулентный реактор диаметром менее 10 см и длиной 600 см взамен объемного реактора смешения объемом 8 м (мощность электродвигателя 75 квт/ч расход жидкого этилена на съем тепла реакции 1,8 т/ч). Характерной особенностью трубчатого турбулентного реактора является то, что он выполнен в виде трубы без охлаждения рубашки с патрубком для спутного ввода катализатора (AI I3 в растворе хлористого этила) и патрубком для радиального ввода раствора сомономеров в хлористом этиле. Помимо низкой металлоемкости (в 900-1 ООО раз меньшей, чем у используемого в стандартном процессе объемного реактора смешения) трубчатый турбулентный аппарат-полимеризатор отличается простотой конструкции, обслуживания и легкостью управления процессом, отсутствием затрат на электроэнер-тто для перемешивающих устройств и хладоагента, подаваемого в реактор, снижением расхода электроэнергии (при непрерывной работе одного реактора в течение года экономия составляет более 650 тыс. квт/ч), отсутствием непроизводительных потерь при сохранении основной технологической схемы и пр. [c.336]

    При производстве дивиннлстирольных и дивинилметилстирольных каучуков полимеризацию проводят в эмульсиях при 5° С в батарее, состоящей из 12 последовательно соединенных аппаратов с мешалками — полимеризаторов, снабженных охлаждающей рубашкой и змеевиком. В качестве теплоотводящей среды используют водные растворы хлористого натрия или хлористого кальция, а также хладагенты. Расход холода для производства 1 т синтетического каучука составляет 170—230 кВт-ч при температуре кипения —20 С. [c.264]

    Реакция сополимеризации протекает в полимеризаторе-автоклаве 3 периодического действия вместимостью 20 м с теплообменным перемешивающим устройством трубчатого типа и многозонной рубашкой, служащими для отвода теплоты полимеризации ( 1880 кДж/кг сополимера). Водная фаза закачивается в полимеризатор насосом 2, после чего аппарат заполняется этиленом до давления 2,5 МПа при производстве грубодисперсных марок СВЭД или 5 МПа в случае синтеза, тонкодисперсных марок СВЭД. [c.58]

    Технологическая схема производства СВЭД непрерывным методом (рис. 2.6) отличается от периодического способа только узлом полимеризации. Водная фаза, насыщенный этиленом ВА, МБМ и инициатор непрерывно поступают в реактор 1, имеющий такую же конструкцию, как и полимеризатор периодического действия, а из него в дополимеризатор 2, представляющий собой трубчатый реактор идеального вытеснения. Заданное давление в полимеризационном, агрегате поддерживается изменением количества растворенного этилена, подаваемого вместе с ВА из аппарата насыщения (поз. 6, рис. 2.5), [c.59]

    Резкий рост интенсивности производства суспензионного ПВХ возможен за счет ликвидации непроизводительных простоев при переводе реакторов-полимеризаторов в непрерывный режим работы. Разработки в этом направлении ведутся в нащей стране и за рубежом уже длительное время. Известны некоторые технологические рещения по аппаратурному оформлению непрерывного процесса в реакторах трубчатого типа, в емкостных реакторах с перегородками, в каскаде реакторов. Однако до сих пор эти разработки не доведены до промыщлен-ной реализации, что обусловлено больщими трудностями, связанными с получением продукта удовлетворительного качества и длительным ведением непрерывного процесса вследствие коркообразования и забивки трубопроводов В последние годы найдены удачные рецептуры, обеспечивающие высокую устойчивость процесса полимеризации ВХ, открыты эффективные антикоркообразователи (нигрозин, соль Фреми, нитрит натрия и др.) [111] и разработаны теоретические основы процесса полимеризации, что дает основание надеяться на рещение этой проблемы в ближайщие годы. В частности, в СССР предполагается пустить промыщленную установку непрерывной суспензионной полимеризации ВХ с удельной мощностью по 375-425 т/(м -год). [c.8]

    В последнее время в производстве суспензионного ПВХ наблюдает ся тенденция к созданию промышленных установок большой единичной мощности с реакторами-полимеризаторами большого объема (фирма Хюльс ФРГ - 200 м , фирма Шинетцу Япония - 130 м ) Испо 1ьзование полимеризаторов большого объема позволяет умень шить число единиц основного и вспомогательного оборудования контрольно-измерительной техники, арматуры и численность обслу живающего персонала. Значительно сокращается общая протяжен ность коммуникаций, число соединений, требующих уплотнения Скорость полимеризации в реакторах большого объема благодаря применению активных инициаторов такая же, как в реакторах неболь шой емкости. Так как длительность вспомогательных операций (загрузки компонентов, выгрузки суспензии, чистки, промывки и т.д.) не изменяется, значительно увеличивается производительность на 1 м-реакционного объема, которая может достигать 200 т/(м -год). [c.14]

    Корки, получаемые при чистке реакторов-полимеризаторов, представляют собой куски, блоки или чешуйки неправильной формы с впажностью до 40%. Куски и блоки достигают размеров 600 мм при толщине до 180 мм, однако такие корки после внедрения технологии покрытия стенок реакторов защитными покрытиями и промывки после выгрузки суспензии водой при высоком (более 20 МПа) давлении образуются крайне редко, и в настоящее время в производствах ПВХ основная масса корок имеет значительно меньшие размеры. Корки из коркоуловителя представляют собой чешуйки, гранулы или крупку размерами до 15 мм и толщиной до 5 мм с влажностью до 40%. [c.167]

    Сополимеризация смеси для получения эластомеров СКТВ и СКТВ-1 протекает аналогично производству эластомера СКТ в полимеризаторе шнекового типа (см. рис. 71, стр. 192) и в тех же условиях. Процессы дозревания , промывки и сушки полимера также аналогичны процессам в производстве СКТ. [c.195]

    Ввиду большой вязкости полпмеризата и необходимости эффективного отвода теплоты, выделяемой при реакции, полимеризаторы (автоклавы) для полимеризации в растворах должны обладать достаточной поверхностью охлаждения и иметь устройство для очистки всей внутренней поверхности от налипающей пленки полимера. Полимеризаторы, используемые в производстве эмульсионных каучуков, для полимеризации в растворах непригодны. [c.157]


Библиография для Полимеризаторы в производстве: [c.88]    [c.88]   
Смотреть страницы где упоминается термин Полимеризаторы в производстве: [c.58]    [c.83]    [c.84]    [c.148]   
Коррозия и защита химической аппаратуры ( справочное руководство том 9 ) (1974) -- [ c.0 ]

Коррозия и защита химической аппаратуры Том 5 (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризаторы в производстве бутадиен-нитрильных

Полимеризаторы в производстве бутадиен-стирольных

Полимеризаторы в производстве бутилкаучука

Полимеризаторы в производстве каучуков

Полимеризаторы в производстве кремнийорганических

Полимеризаторы в производстве натрий-бутадиеновых

Полимеризаторы в производстве полиэфиров



© 2024 chem21.info Реклама на сайте