Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты в реакциях этерификация

    Скорость реакции этерификации наибольшая для первичных спиртов Сложные эфиры третичных спиртов и карбоновых кислот прямой этерификацией получить нельзя, [c.172]

    Важнейшей из реакций этерификации является взаимодействие карбоновых кислот со спиртами, катализируемое кислотами  [c.236]

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    Один из технически приемлемых и наиболее дешевых способов этерификации состоит в том, что спирт нагревают с соответствующей карбоновой кислотой и незначительным количеством концентрированной серной кислоты. Образующуюся при реакции воду непрерывно удаляют дистилляцией с бензолом, используемым как переносчик (водяных паров). [c.328]

    В дизельных топливах в условиях хранения и эксплуатации при действии растворенного кислорода накапливаются низкомолекулярные продукты окисления (гидропероксиды, спирты, карбоновые кислоты и др.), которые вступают в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, вызывающих осадко- и смолообразование в системе. Осадки загрязняют топливные фильтры и отрицательно влияют на работу топливных насосов высокого давления. При работе двигателя смолы отлагаются на горячих поверхностях распылителей форсунок и впускных клапанов, что приводит к неравномерной подаче топлива и вследствие этого к увеличению дымности и токсичности отработавших газов при повышенном расходе топлива. [c.6]

    Замещение гидроксигруппы на алкоксигруппу. Наибольшее значение в препаративной практике получила реакция замещения гидроксильной группы карбоновой кислоты на алкоксигруппу— реакция этерификации  [c.168]

    Образование сложных эфиров. Как уже упоминалось, при нагревании кислот со спиртами в присутствии водоотнимающих средств образуются сложные эфиры карбоновых кислот (реакция этерификации)  [c.144]

    Исследованиями Н. А. Меншуткина было показано, что легче всего сложные эфиры получаются из первичных спиртов и низкомолекулярных кислот. Вторичные спирты реагируют труднее. Эфиры третичных спиртов получаются с небольшим выходом, так как третичные спирты в присутствии минеральных кислот легко отщепляют воду, превращаясь в непредельные углеводороды. На ход реакции оказывает влияние и строение карбоновой кислоты. Чем больше число и объем радикалов в а-положении по отношению к карбоксильной группе, тем меньше скорость этерификации. Если в ароматических кислотах заместитель находится в о-положении по отношению к карбоксильной группе, то этерификация также проходит медленно и с плохим выходом. [c.165]

    В дизельном топливе, содержащем нестабильные фракции вторичного происхождения, при действии растворенного кислорода в условиях хранения и эксплуатации накапливаются низкомолекулярные продукты окисления (гидропероксиды, карбоновые кислоты, альдегиды и т. д.), вступающие в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых медленно коагулирует в нерастворимые соединения. Катализаторами реакций уплотнения являются кислотные продукты, поэтому введение в топливо веществ основного характера (третичных аминов), нейтрализующих кислоты и способных эффективно ингибировать радикально-цепное окисление, оказывает стабилизирующий эффект [11, 43, 46]. Анализ результатов [83-86, 99] свидетельствует, что этим требованиям отвечает основание Манниха ионола (Агидол-3). [c.183]


    На платиновом аноде в кислых и щелочных средах окисление алифатических спиртов протекает с образованием альдегидов, карбоновых кислот и диоксида углерода как продукта полной деструкции спирта. В растворах кислот окисление спиртов на электроде из диоксида свинца протекает более селективно и приводит к образованию соответствующих карбоновых кислот [реакция (33.1)] и их эфиров. Последний является продуктом химической реакции этерификации (33.2)  [c.207]

    Характерными, реакциями кислот являются замещение атома водорода карбоксильной группы катионом (образование солей карбоновых кислот) и этерификация при взаимодействии со спиртом  [c.270]

    Латеральная атака встречается часто при реакциях карбоновых кислот скорость этерификации кислот резко уменьшается, когда пространственные затруднения в кислотах возрастают. [c.119]

    Карбоновые кислоты вступают в реакцию со спиртами с образованием эфира данной кислоты (реакция этерификации)  [c.285]

    Относительные скорости катализируемых кислотой реакций этерификации карбоновых кислот [c.198]

    Расчет констант скоростей был произведен на ЭВМ Урал-14 . Кинетические уравнения реакции этерификации гликоля и моно-карбоновой кислоты имеют следующий вид  [c.105]

    На об )атном направлении этого процесса основан прямой синтез сложных эфиров из карбоновых кислот и олефинов. Реакция экзо-терми на и обратима, иричем ее термодинамические характеристики можно рассчитать из последовательности процессов гидратации олефина и этерификации спирта  [c.209]

    Разница в скоростях этерификации изомерных спиртов настолько велика, что этой особенностью пользуются для определения положения гидроксильной группы в молекуле. Такой же закономерностью обладают и гликоли так, скорость этерификации первичных гликолей 45—42%, вторичных 30—15%, третичных—около 1%. Фенолы по скорости этерификации близки к третичным спиртам (1,75-1-0,5%). Исследуя влияние строения карбоновых кислот на скорость реакции, Н. А. Меншуткин и для них установил те же закономерности этерификация кислот с метиленовой группой в а-положении к карбоксильной группе имеет скорость порядка 60—40%, со вторичным атомом 30—20%, с третичным 8—6%. Это было впоследствии подтверж-30  [c.467]

    Значительный теоретический интерес представляет вопрос, которое из веществ, участвующих в реакции, является донором гидроксила—спирт или карбоновая кислота, так как для реакции этерификации возможны две схемы  [c.473]

    Реакционная способность карбоновых кислот изменяется симбатно их силе. Поэтому более реакционноспособны в реакции этерификации кислоты, у которых К содержит электроноакцепторные группы. Кислотность щавелевой и муравьиной кислот (рКа соответственно 1,92 и 3,77) настолько велика, что при получении их эфиров не требуется присутствия минеральных кислот. [c.169]

    Термодинамика реакций этерификации. Взаимодействие спиртов с карбоновыми кислотами в жидкой фазе протекает практически без какого-либо поглощения или выделения тепла (АЯ = 0). Соответствеино, алкоголиз, ацидолиз и переэтерификация также имею тепловой эффект, близкий к нулю. Следовательно, константы равновесия этих реакций ие зависят от температуры. В отличие от этого, этерификация спиртов хлораигидрндами кислот, а также первая стадия этерификации спиртов ангидридами являются экютермическими процессами. [c.205]

    Хлорангидриды и ангидриды кислот применяются в тех случаях, когда реакция этерификации проходит с трудом или провести ее вообще не удается. Последнее обстоятельство может быть вызвано либо малой реакционной способностью карбоновой кислоты, либо ее неустойчивостью или неустойчивостью соответствующего спирта в условиях этерификации. [c.168]

    В присутствии сильных минеральных кислот (H SOJ карбоновые кислоты со спиртами (первичными, вторичными) образуют сложные эфиры - реакция этерификации  [c.107]

    Карбоновые кислоты взаимодействуют со спиртами с образованием сложных эфиров (реакция этерификации). Реакция катализируется кислотами. При взаимодействии спирта с карбоновой кислотой отщепляется водород от спирта и гидроксигруппа от кислоты  [c.342]

    Важнейшим методом получения сложных эфиров является реакция этерификации - взаимодействие карбоновых кислот со спиртами. Реакция протекает при каталитическом воздействии серпой кислоты. Наиболее легко вступают в реакцию первичные спирты и более сильные карбоновые кислоты. Реакция этерификации обратима, поэтому для увеличения выхода продукта необходимо постоянно удалять из реакционной колбы продукты реакции - сложный эфир и воду. [c.34]

    Согласно приведенной схеме, в процессе этерификации происходит 0-ацильное расщепление (остаток R O называют ацильным остатком) атом кислорода отщепляемой воды происходит не из спирта, а из карбоновой кислоты. Поскольку этерификация катализируется кислотой, а стадия, определяющая скорость (атака спиртом протонированной карбоксильной группы), представляет собой бимолекулярную реакцию, то такой процесс получил название механизма Аас2. [c.311]


    Механизм расщепления эфиров, сульфидов и третичных аминов ангидридами и галоидангидридами, по нашему мнению [37], имеет общие черты с механизмом таких нуклеофильных реакций производных карбоновых кислот, как этерификация и амино-лиз. Общим для всех этих процессов является образование аци-лониевой соли, и лишь на последующих стадиях наблюдается различие в рассматриваемых нами случаях происходит разрыв связи С—X (X = О, 8, КВ), а не Н—X, как при этерификации пли аминолизе  [c.21]

    Вопрос о механизме расщепления связей при рассматриваемых процессах был однозначно решен только с помощью изотопного метода. При омылении амилацетата водой, содержащей повышенное против обычного количество О , в присутствии щелочи Польяни и Сабо [715] не обнаружили избытка последнего в образовавшемся спирте. Это наблюдение согласуется только с механизмом (12,1) . После того, как механизм (12,1) был доказан изотопным методом для катализируемого кислотами гидролиза эфиров [713] и этерификации кислот [716, 776], рассматриваемый вопрос следует считать окончательно разрешенным при реакциях гидролиза эфиров карбоновых кислот и этерификации кислот спиртами с радикалами средней электроотрицательности расщепление и образование связей происходит по направлению R O OR (ацил-кислородный механизм), а не по направлению R OOJ, R (алкил-кислородный механизм) [717], Иными словами — радикал спирта при указанных реакциях никогда не теряет связи со своим атомом кислорода. [c.571]

    Для обсуждения пространственных эффехстов в реакциях присоединения выбраны катализируемые кислотами реакции этерификации карбоновых кислот, поскольку изучено большое их количество. Вследствие нечувствительности скорости катализируемой кислотами этерификации к полярным влияниям (см. гл. 13) можно быть вполне уверенным, что различие в скорости обусловлено главным образом пространственными факторами. [c.213]

    Структурные изменения в молекуле карбоновой кислоты влия-ю " на скорость этерификации противоположно их влиянию на рав-нсвесие. Так, удлинение и разветвление углеродной цепи карбоновой кислоты, которое, как мы видели выше, ведет к увеличению кснстанты равновесия, снижает скорость реакции. Особенно медленно реагируют тризамещенные уксусные и ароматические кислоты скорость их этерификации в 40—100 раз меньше, чем для уксусной кислоты. Наоборот, муравьиная кислота обладает самой Bbi oKon реакционной способностью. [c.208]

    Пероксид водорода обычно применяют в виде 30%-ного водного раствора. Он дает с карбоновыми кислотами соответствующие падкислоты по реакции, аналогичной этерификации  [c.354]

    Для идентификации сложных смесей, нестабильных веществ, практически нелетучих высокомолекулярных соединений часто используют аналитическую реакционную газовую хроматографию — вариант, в котором хроматографический и химический анализ сочетаются в единой хроматографической схеме. Задача метода состоит в том, чтобы в результате химических реакций получить новую смесь, кор/поненты которой разделяются или идентифицируются лучще, чем компоненты исходной смеси. Широкое применение при этом находит метод вычитания, при котором проводят два хроматограсЬических анализа — исходной смеси до и после поглощения определенной группы компонентов. Таким способом можно, например, устанавливать наличие во фракциях непредельных углеводорсдов, селективно поглон1,ая их в реакторе с силикагелем, обработанным серной кислотой. Прп реакционной газовой хроматографии используются также реакции гидрирования и дегидрирования, этерификации (для анализа карбоновых кислот в виде эфиров), лиролиза высокомолекулярных соединений. [c.86]

    В литературе имеется лишь небольшое число работ [1, 21, пос-ященных систематическому изучению кинетики реакции этери-)икации гликолей и высокомолекулярных карбоновых кислот. 1меющийся по этому вопросу материал недостаточен для обобщаю-Шх вьшодов. В связи с этим была изучена кинетика этерификации И-, триэтиленгликоля (ДЭГ, ТЭГ) н-монокарбоновыми кислотами залериановой, капроновой, энантовой, каприловой и пеларго-овой). [c.103]

    Возникает вопрос о механизме реакции спирта с серной кислотой. Как и при этерификации карбоновых кислот, образование воды может происходить за счет кислорода кислоты или спирта. Отсутствие перегрунпировки при превращении неопеп-тилового спирта в алкилсерную кислоту [23] свидетельствует [c.10]

    Анализ ИК-спек гров окисленных образцов ятелыюго топпива показал наличие сложной с.меси кислородсодержащих ароматических структур, состояитих из гидропероксидов, спиртов, фенолов, ароматических и арилароматическнх. эфиров (ароматических альдегидов и карбоновых кислот), сложных эфиров ароматических карбоновых кислот, которые легко. могут вступать в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых коагулирует в нерастворимые соединения, вызывая осадко- и смолообразование [6]. [c.117]

    На скорость реакции этерификации влияет также объем группы Р в карбоновой кислоте. Известно, что пивалиновая кислота (67), кислотность которой лишь немного меньше, чем кислотность уксусной кислоты, обра.зует лoжf,ыe эфиры с большим трудом, так как метильные группы. злтрудняют нуклеофильную атаку находящегося рядом атома углерода карбоксильной группы. По этим же причинам мезитойная кислота [c.170]

    Сложные эфиры получаются при взаимодействии кислот со спиртами (этерификация), при взаимодействии хлорангидридов или ангидридов кислот со спиртами, в результате реакции переэтери-фикации или алкоголиза, при действии галогеналкилов на соли карбоновых кислот, диазометановым методом, по реакции В. Е. Тищенко и т. д. [c.164]


Смотреть страницы где упоминается термин Карбоновые кислоты в реакциях этерификация: [c.282]    [c.318]    [c.305]    [c.238]    [c.221]    [c.41]    [c.29]    [c.128]    [c.132]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.257 , c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоновые реакции

Кислоты этерификация

Реакции этерификации

Этерификация



© 2025 chem21.info Реклама на сайте