Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод анализа измерений гальванический

    Основной особенностью высокочастотного титрования является бесконтактное измерение электропроводности (высокочастотной) титруемого раствора, т. е. в отличие от обычной кондуктометрии в этом методе анализа отсутствует гальванический контакт электродов с раствором. Благодаря применению высокочастотных электромагнитных полей рассматриваемый метод позволяет использовать для обнаружения точек [c.133]


    Под потенциометрией понимается ряд методов анализа и определения физико-химических характеристик электролитов и химических реакций, основанных на измерении электродных потенциалов и электродвижущих сил гальванических элементов. Потенциометрические измерения являются наиболее надежными при изучении констант равновесия электродных реакций, термодинамических характеристик реакций, протекающих в растворах, определении растворимости солей, коэффициентов активности ионов, pH растворов. Особенно общирное применение нашли потенциометрические измерения именно при определении pH, которое является важнейшей характеристикой жидких систем. Для этого используют электрохимическую цепь, составленную из электрода сравнения и индикаторного электрода, потенциал которого зависит от концентрации (активности) ионов Н (так называемые электроды с водородной функцией). К таким электродам относятся, например, рассмотренные ранее водородный и стеклянный электроды. [c.264]

    Потенциометрический анализ — это один из электрохимических методов анализа, основанный на измерении потенциала электрода, погруженного в анализируемый раствор, или, иначе говоря, на определении концентрации иона по электродвижущей силе (ЭДС) гальванического элемента. [c.398]

    Величина электропроводности растворов имеет большое значение для протекания электрохимических процессов. На ее основе можно сделать рациональный выбор состава электролита, при котором непроизводительные затраты электроэнергии будут минимальными. Знание электропроводности растворов необходимо при составлении энергетических и тепловых балансов электролизеров и химических источников тока. С величиной электропроводности связана рассеивающая способность гальванических ванн, т. е. возможность получения равномерного осадка металла на участках покрываемого изделия, различно удаленных от анода. Однако использование данных по определению электропроводности не ограничивается только электрохимией. Кондуктометрия находит самое широкое применение как метод химического анализа, производственного контроля и научного исследования. Она обладает рядом преимуществ перед химическими методами анализа, так как позволяет определить содержание индивидуального вещества в растворе простым измерением электропроводности раствора. Для этого нужно только иметь предварительно вычерченную калибровочную кривую зависимости электропроводности от концентрации вещества. Кроме того, в процессе измерения электропроводности анализируемый раствор практически не изменяется, благодаря чему можно проводить повторные измерения и, сохранив его, в любое время проверить полученные результаты. [c.104]


    В современной научной, учебной и технической литературе термин потенциометрия применяется для обозначения методов анализа и определения различных физико-химических характеристик электролитов и химических реакций, основанных на измерениях электродных потенциалов (ЭП) и электродвижущих сил (ЭДС) гальванических элементов различных типов. Потенциометрические измерения представляют важнейший и наиболее надежный источник получения констант равновесия электродных реакций и химического сродства одних веществ к другим, термодинамических характеристик реакций, протекающих в растворах (электролитической диссоциации, ассоциации, комплексообразования), произведений растворимости солей, коэффициентов активности ионов, pH растворов. Обширны применения измерений ЭП и ЭДС в аналитической химии. Измерения ЭДС и ЭП позволяют определить активности либо концентрации растворенных веществ, либо общее содержание вещества в растворе. Для этой цели применяют два вида потенциометрических измерений  [c.43]

    Потенциометрия —важный метод исследования и анализа, в основе которого лежат термодинамические соотношения между э. д. с. электрохимических систем или электродными потенциалами, с одной стороны, и физико-химическими параметрами растворов и химических реакций—с другой. Для измерения э. д. с. гальванических элементов в равновесном состоянии наиболее удобен компенсационный метод. Для определения потенциалов отдельных электродов электрохимическая цепь составляется из исследуемого электрода и электрода сравнения с известным значением потенциала (см. 176). Рассмотрим отдельные области применения потенциометрических определений.  [c.494]

    Для точного измерения э. д. с. гальванических элементов наиболее пригодным является описанный ранее компенсационный метод с применением потенциометров. Существуют электронные вольтметры, которые дают возможность непосредственно измерять с достаточной точностью малые напряжения и э. д. с. цепей. Действие этих вольтметров основано на принципе усиления крайне слабых токов электронными усилителями. Такие приборы могут быть успешно использованы в потенциометрическом анализе для измерения э. д. с. или для наблюдения за ее изменением. Все измерители напряжения включают в цепь только параллельно измеряемой системе. [c.55]

    Приборы неразрушающего контроля, основанные на термоэлектрическом методе, находят применение при сортировке деталей по маркам сталей, для экспресс-анализа стали и чугуна непосредственно в ходе плавки и в слитках, определения толщин гальванических покрытий, измерения глубины закаленного слоя, исследования процессов усталости металла. [c.469]

    При измерении напряжения элемента стрелка вольтметра показывает изменение напряжения только на клеммах самого прибора. В гальваническом элементе происходят химические и концентрационные изменения, которые вызывают поляризацию электродов, что ведет к непрерывному уменьшению э. д. с. В практике потенциометрического анализа используются компенсационный и некомпенсационный методы определения э. д. с. электродной пары. [c.209]

    Полярографический метод измерений был предложен в 1922 г. чехословацким ученым Я. Гейровским. Дальнейшее развитие полярографического анализа привело к разработке ряда новых методов, отличающихся различными способами получения и измерения диффузионного тока. Практическое применение для газового анализа нашли деполяризационный и гальванический методы. [c.84]

    Сущность метода. Э. д. с. гальванического элемента определяется непосредственно чувствительными измерительными приборами, последовательно с которыми включается большое и точно известное сопротивление. При включении измерительного прибора в сеть гальванического элемента необходимо, чтобы внешнее сопротивление сети было во много раз больше внутреннего. Тогда о напряжении между электродами элемента можно будет судить по силе тока. Подобная схема позволяет по изменению последней в цепи определять изменения э. д. с. испытуемого гальванического элемента. Шкала чувствительности прибора может быть отградуирована в милливольтах—милливольтметры в амперах — гальванометры в единицах измерения анализа, например в значениях pH, т. е. эти измерительные приборы выступают в роли индикаторов. [c.445]

    Предложен метод количественного анализа работы коррозионных элементов, возникающих в катодных гальванических покрытиях. Метод основан на построении реальных коррозионных диаграмм для двухэлектродных систем и определении силы тока элементов и их суммарного сопротивления. О защитных свойствах и качестве катодных гальванических покрытий предлагается судить по эффективности анодного процесса, скорость которого определяется по значению стационарного потенциала, устанавливающегося на поверхности покрытия, или по измерению истинного анодного тока потенциостатическим методом в интервале от стационарного потенциала системы до стационарного потенциала покрытия. Пористость покрытия оценивается по значению стационарного потенциала системы, коррозионному то<У элементов и их суммарному сопротивлению. Таблиц 3, иллюстраций 3. библиогр. 5 назв. [c.217]


    Электролит алюминиевого электролизера, определение крио-литового отношения 6006 Электролиты вычисление pH в водных растворах 694 измерение электропроводности 1117, 1118 Электролиты гальванич. ванн, определение отдельных компонентов, см. при соответствующих элементах и веществах, а также ванны гальванические Электролиты расплавленные, как фон в полярографии 1034, 1036, 1038, 1054 Электрометаллургия, контроль сырья 6291 Электрометрический рН-компара-тор, применение 1805 Электрометрическое титрование, см. потенциометрия Электрон капельный метод определения качества оксидной пленки на нем 3835 определение А1 в магниевых сплавах типа электрон 5210 Электронагревательные приборы 2245—2256 Электронная теория кислот и оснований 570 Электронные приборы для элек-трохимич. методов анализа, классификация 1712. 1713 Электронографическая аппаратура 2284 [c.400]

    Теоретический анализ работы гальванических элементов с позиции электрохимии, проведенный Малошуком в исследовании [1], позволил четко определить условия, в которые следует поставить электродные системы для получения достоверных термодинамических данных при минимально возможном числе измерений. Доказано, в частности, что гальванические цепи должны работать в условиях фазового равновесия кристалл — раствор. Преимущества предложенного метода состоят в том, что он позволяет находить термодинамические характеристики, минуя определение стандартных электродных потенциалов путем экстраполяции на бесконечное разбавление и тем самым избегать необходимости экспериментировать в условиях сильно разбавленных растворов, а также привлекать для расчета дополннтельные термодинамические данные. Дальнейщее развитие метода и его экспериме -тальное подтверждение нащли отражение в ряде последующих работ [2, 3, 4, 5]. При этом выяснилось, что предложенный теоретически и экспериментально обоснованный способ нахождения термодинамических характеристик носит общий характер и может быть попользован для определения основных термодянамичеаких констант (АС гэв, АЯ гоа, 5 2эа) целого ряда различных химических соединений. [c.66]

    Для определения воды (от 0,3 до 15%) в неводных гальванических растворах для меднения и никелирования, а также в диметилсульфоксиде и этиленгликоле Цирхорц [48] использовал поглощение в ближней ИК-области. Воспроизводимость измерений поглощения при 1,94 мкм составляла 1%. При анализе образца, помещенного в кварцевую кювету длиной 1 мм, спектр медленно записывается в интервале длин волн 1,85—1,95 мкм. Поглощение рассчитывали после вычитания плеча при 1,86 мкм из значения максимума поглощения. Показано [48], что полученные данные отличаются не более чем на 5% (отн.) от значений, определенных газохроматографическим методом. [c.429]

    В последнее время широкое распространение получил новый метод полярографического анализа, основанный на предварительном электролитическом концентрировании металлов на стационарных электродах и последуюш,ем анодном растворении их при постепенно снижаюш,емся отрицательном потенциале [1—4]. Брос-ковый ток на стационарном электроде, полученный в определенных условиях, правильно отражает явление концентрационной поляризации и может быть использован для построения полярографических 1—Е кривых [5—6]. Необходимым условием воспроизводимости бросковых токов является полная гальваническая деполяризация электрода после каждого измерения, осуш,ест-вляемая коротким замыканием электродов. При коротком замыкании электродов после предварительного электролиза наблюдается обратный бросок тока, являюш,ийся следствием разрядки гальванического элемента. До последнего времени обратный брос-ковый ток не привлекал достаточного внимания исследователей, и поэтому в настояш ей работе нами была предпринята попытка изучить это явление и выяснить возможности применения его в полярографии. [c.179]

    Точным методом определения концентрации перекиси водорода является измерение температуры замерзания ее чистых водных растворов так, у растворов с высоким содержанием перекиси водорода температура замерзания изменяется приблизительно на Г ira каждый весовой процент состава. Однако этот метод следует рассматривать лишь как специальный в качестве обычного экспериментального метода он ие подходит. В особых условиях использована для открытия перекиси водорода и масс-спектрометрия [105]. Другие физические свойства растворов перекиси водорода применяются очень редко для анализа. Хотя диэлектрическая проницаемость как будто и является удобным показателем концентрации перекиси водорода, но, поскольку кривая диэлектрической проницаемости как функция концентрации обладает максимумом, для ее использования необходимо предварительно знать приближенный состав раствора. Кроме того, этот метод пригоден лишь для анализа чистейших проб, так как уже следы примеси электролитов влияют на электропроводность и таким образом обусловливают ошибки в измерениях [106]. Для определе1шя перекиси водорода предложено также применение гальванических элементов [107]. [c.468]

    Это в равной мере относится к образцам, выдержанным непрерывно в течение определенного срока, и к параллельным, которые по 2—3 штуки снимали через определенные интервалы времени. После окончательного осмотра образцы можно использовать для количественной оценки коррозии. Для атмосферных испытаний характерно то, что количественную оценку коррозии на открытых станциях можно производить только по потере веса, а по увеличению в весе — лишь при испытании на закрытых установках, когда есть гарантия сохранения продуктов коррозии на поверхности металла. Техника измерений такая же, как и при лабораторных испытаниях. В добавление можно указать, что для очистки от продуктов коррозии оцин-кованых образцов рекомендуется обработка их 10%-ным раствором персульфата аммония. Нерастворимые в воде продукты коррозии на стальных образцах с гальваническими покрытиями и без покрытий удаляют катодной обработкой в 5— 10%-ном растворе едкого натра при плотности тока 1—2 а дм . По данным работы [319], для удаления продуктов коррозии с цинковых и кадмиевых покрытий такая обработка продолжается не более 2 мин. Для удаления продуктов коррозии с указанных покрытий, кроме того, применяют обработку без тока в растворе 150—200 г/л хромового ангидрида при 20—22° С. Применяются и другие методы очистки поверхности, многие из которых приведены выше при рассмотрении весового показателя коррозии. При наличии продуктов коррозии, растворимых в воде, их удаляют кипячением в дистиллированной воде. Последующий анализ воды на содержание ионов металла и анионов [c.207]

    Предложенный Г. Т. Вайнштейном [87] кондуктометоиче-ский метод основан на измерении внутреннего сопротивления гальванического элемента, у которого электролитический ключ, соединяющий два электролита, представляет собой стеклянную трубку с анализируемым раствором. Изготовление такого прибора доступно многим заводским лабораториям. В последнее время в практику аналитических лабораторий начинает внедряться метод высокочастотного титрования [88—99], в частности для определения серной кислоты и сульфатов [99—100]. Наконец, совсем недавно Бьен [101] предложил микрометод высокочастотного титрования сульфатов и хлоридов в одной навеске, который может оказаться полезным при анализе дистиллатов, подвергавшихся гипохлоритной очистке от сернистых соединений. Браун [23] кондуктометрическим методом контролирова.л образование серной кислоты в поглотителях, не прерывая сожжение. [c.20]

    Область аналитической химии, в которой используется электрохимия, называется электроаиалитической химией [1]. При анализе состава проб методами электроаналитической химии обычно измеряют три параметра потенциал, силу тока и продолжительность электродного процесса. В этой главе рассматри-ьаются некоторые вопросы, относящиеся к электродным потенциалам. Измерения силы тока и продолжительности электродной реакции рассмотрены в гл. 14. Электродные потенциалы, возникающие в классическом гальваническом элементе, имеют огромное теоретическое и практическое значение для понимания многих вопросов не только электроаналитической химии, но также и термодинамики и химического равновесия, включая и измерение констант равновесия. [c.239]

    Чтобы говорить о влиянии собственных напряжений на определенные свойства гальванически обработанных детален, чтобы оценить это влияние на показатели прочности, необходимо знать характер (растяжение или сжатие) собственных напряжений и приблизительную их величину. Трудность, осложняющая эту задачу, заключается в том, что до сих пор отсутствует возможность замера внутренних напряжений гальванически покрытых деталей. Поэтому почти во всех случаях приходится ограничиваться определением собственных напряжений выбранных образцов, хотя гальван чески обработанная деталь и образец подвергаются различным воздействия.м, начиная с обработки поверхности (в результате которой изменяются собственные напряжения) и кончая гальванической обработкой. В литературе приведен ряд методов для количественного определения собственных напряжений. В США имеется в продаже несколько механически действующих приборов, но они служат (за исключением рентгенографических анализов микроструктуры) только для грубых сравнительных измерений, пригодных лишь для проверки. [c.171]

    Для иллюстрации характера перечисленных работ воспроизведем краткое содержание некоторых из них. В [6480] осуществлен термодинамический анализ реакции взаимодействия паров плавиковой кислоты с углеродом. В [6500] дано определение оптимальной температуры реакции между раствором и газом при повышенном давлении на примере процесса восстановления хромита натрия водородом при 100—350° С. В (6575] рассмотрена возможность изучения термодинамики окислов методом измерения э. д. с. гальванических ячеек с твердым электролитом, а в [66901 — фазо ые равновесия при диссоциации твердых растворов ортотитанатов с ферритами и особенности их термодинамического анализа. Теория хлорного метода в промышленности редких и цветных металлов изложена в (6778]. Граничные условия синтеза алмаза в системе металл — углерод (с учетом образования твердых растворов) освещены в 6868]. Авторы работы [6943] уточнили диаграмму сродства элементов к кислороду, применив ее к исследованию восстановительных процессов в доменной печи. В [6973] дан расчет реакций изотопного обмена между НгОиНгЗ [c.59]

    Главное преимущество методов ВЧА обусловлено отсутствием гальванического контакта между наружными обкладками или катушкой индуктивности и раствором, находящимся внутри ячейки с изолирующими стенками. Благодаря этому исключаются явления электрохимической поляризации, отравления электродов, катализа материалом электродов реакций в растворе и другие побочные процессы, что особенно важно для анализа различных агрессивных сред в промышленных условиях. При этом необходимо учитывать, что диэлектрик, из которого изготовлена ячейка, не является абсолютно инертным к растворам электролии-в в условиях высокочастотных измерений. По наблюдениям авторов, на внутренних стенках стеклянных ячеек в местах, соответствующих наружным обкладкам, наблюдается своеобразное расстекло-вывание , помутнение стекла и образование в нем микротрещин. В этой связи возникает проблема выбора материала с антикорро-ЗИ0ННЫ.МИ свойствами для датчиков промышленного назначения. [c.4]

    В основе прямой (непосредственной) потенциомет-рии лежит измерение э. д. с. гальванического элемента (включающего индикаторный ионоселективный электрод), которая зависит логарифмически от концентрации (активности) исследуемого раствора. В автоматическом анализе обычно используют способ прямой потенциометрии, но в некоторых случаях можно применять и потенциометрическое титрование. Возможности прямой потенциометрии расширяет метод стандартных добавок. [c.168]

    Одной из важнейших характеристик детектора в количественных измерениях является линейность выходного сигнала от количества анализируемого компонента. Крэмер и Бехтольд исследовали линейность гальванического детектора при анализе галогеносодержащих соединений. Для бромбензола линейность детектора составляет 10 . Была изучена линейность детектора при анализе серусодержащих соединений, для чего были применены методы экспоненциального разбавления и абсолютной калибровки. Вели- [c.43]


Смотреть страницы где упоминается термин Метод анализа измерений гальванический: [c.116]    [c.321]    [c.321]    [c.164]   
Автоматический анализ газов и жидкостей на химических предприятниях (1976) -- [ c.46 , c.53 , c.85 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

гальванические



© 2025 chem21.info Реклама на сайте