Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентность элемента и номер главной подгрупп

    Высшая валентность элементов определяется в основном номером группы периодической системы, т. е. должна изменяться в пределах от 1 до 8. Однако ход изменения валентности элементов в периодах и группах представляет собой сложную функцию (наблюдается ряд отступлений). Например, в главной п<)д-группе I группы все элементы одновалентны, а в побочной подгруппе этой группы валентность элементов Си, Ag и Аи может быть равна 1, 2 и 3. Элементы VHI побочной подгруппы, судя по номеру группы, должны проявлять максимальную валентность 8. Но только для рутения и осмия известны соединения, в которых они восьмивалентны для остальных элементов подгруппы известны максимальные валентности от 4 до 6. [c.77]


    Рассмотреть особенности строения атомов элементов главной подгруппы третьей группы. Какие валентные состояния характерны для этих элементов Как изменяются их свойства с увеличением порядкового номера элемента  [c.244]

    I См. также Номер главной подгруппы и валентность (стр. 44). Валентность указывается римской цифрой вверху справа от сим-вола элемента.  [c.58]

    Какая существует зависимость между числом валентных электронов атома и номером группы, в которой находится элемент а) главной подгруппы, б) побочной подгруппы  [c.65]

    Хлор находится в УП (нечетной) группе и валентности его будут нечетными 1, 3, 5 и 7. Таким образом, для элементов главных подгрупп четных групп будет характерна переменная четная валентность, для нечетных подгрупп — нечетная. В том и другом случае максимальная валентность не превышает номера группы, т. е. числа электронов на внешней оболочке. [c.76]

    Элементы побочных подгрупп в какой-то мере сходны с элементами соответствующих главных подгрупп. Сходство в наибольшей степени проявляется у элементов третьей группы, где только начинается ответвление побочных подгрупп. С возрастанием порядкового номера -элемента в группе и номера самой группы (начиная с третьей группы) сходство уменьшается и в восьмой группе почти совсем исчезает. В первой группе вновь появляется отдаленное сходство элементов обеих подгрупп, а во второй сходство весьма сильное электроны (п—1) элементов подгруппы цинка уже не участвуют в валентных связях. [c.318]

    Гомология Н и Не со щелочными и щелочноземельными металлами в свете изложенного становится ясной, последует еще указать на причину укрепившегося в науке сопоставления гелия с элементами последовательности N6— Кп. Давно уже полагают, что в Системе имеется нулевая группа элементов, включающая в себя не только неон и его гомологи, но и гелий. Так как номера главных подгрупп теперь обычно сопоставляют с числом внешних валентных дор-электронов, то в последнее время предложено называть неон и его гомологи элементами восьмой группы при этом делается очевидным, что гелий к подгруппе неона принадлежать не может, г Причина сходства Не и Ые, т. е. их функциональной химической инертности, не одинакова для Не она заложена в законченности подоболочки [c.165]

    Металлическими элементами, как известно, начинается каждый период, и число их возрастает с увеличением номера периода. Так, если в первом периоде металлических элементов нет совсем, то во втором их два, в третьем три, в четвертом тринадцать, в пятом четырнадцать, в шестом двадцать восемь. В седьмом периоде металлическими должны быть двадцать девять элементов. Металлические элементы по максимальной валентности, формам и свойствам главных соединений подразделяются на группы и подгруппы. Элементы, составляющие главную подгруппу I группы периодической системы (за исключением водорода), называются щелочными металлами. Элементы главной подгруппы П группы (кроме бериллия) носят название щелочноземельных металлов. [c.200]


    Современная теория строения атомов и молекул неопровержимо свидетельствует о том, что основой периодического закона является строение электронных оболочек атомов химических элементов. Важнейшая химическая характеристика элементов главных подгрупп — валентность атомов — определяется структурой внешнего электронного слоя, конкретнее — числом неспаренных электронов. Строго обусловленные причины предопределяют периодичность заполнения электронных уровней в атомах с увеличением атомного номера, т. е. с возрастанием числа электронов. Это в свою очередь обусловливает периодическое изменение числа неспаренных элект  [c.18]

    Первый вариант системы, который Менделеев разослал многим химикам в феврале 1869 г., был так называемым длиннопериодным. В одной из современных форм такой вариант помещен на втором форзаце. В ней подгруппы в- и р-элементов (главные) помечены буквой А, подгруппы -элементов (побочные) — буквой В рядом с номером группы. Сходство элементов подгрупп А и В одной группы обнаруживается главным образом в высших кислородных соединениях (в соединениях с высшей положительной валентностью). У них гораздо меньше сходства в соединениях с низшей положительной валентностью, мало сходства в простых веществах и совсем нет сходства в водородных соединениях. В строении атомов это сходство проявляется в одинаковом числе электронов, от которых зависит проявление валентности элементов, а различие заключается в том, что эти электроны у главных элементов принадлежат только внешнему уровню, а у побочных распределены по двум уровням (л — 1)й и П8. [c.79]

    У элементов главных подгрупп высшая положительная валентность определяется общим числом П5- и пр-электронов внешнего слоя атома. У элементов же побочных подгрупп суммируются пз- и и (п — 1) -электроны внешнего (п) и предвнешнего (п — 1) электронных слоев. Эти суммы и отвечают номеру группы. [c.87]

    Назовите d-элементы IV группы периодической системы, напишите их электронные формулы и укажите различие в строении внешнего электронного слоя нх атомов и атомов элементов главной подгруппы. Приводит ли это к различию в числе валентных электронов Совпадает ли оно с номером группы  [c.317]

    Из таблицы видно, что в атомах элементов II группы валентными являются п5 -электроны, где п — номер периода. В атомах элементов главной подгруппы пх -электроны служат непосредственной достройкой к оболочке атома соответствующего инертного элемента [c.410]

    С увеличением номера периода увеличивается радиус атома и ослабляется связь валентных электронов с ядром. С увеличением номера группы для элементов главных подгрупп увеличивается шсло электронов на внешнем энергетическом уровне, увеличивается заряд ядра и усиливается связь валентных электронов с ядром. [c.77]

    Общая характеристика элементов подгруппы титана. Атомы этих элементов имеют электронную конфигурацию (п— )d ns . Их высшая валентность равна четырем, но бывают двух- и трехвалентными. Стабильность высшей валентности немного увеличивается с увеличением порядкового номера, но в главной подгруппе от германия к свинцу она уменьшается. Устойчивость соединений двух- и трехвалентных элементов невелика и убывает от титана к гафнию. Цирконий является немного металличнее титана, а свойства гафния очень близки к цирконию. Отделить гафний от циркония — задача очень сложная. Благодаря лантаноидному сжатию радиусы атома Hf и иона Hf " меньше, чем у циркония, потенциал ионизации (7,3 в) на 0,5 в выше, чем у циркония. Плотность гафния в 2 раза больше плотности циркония, а электродные потенциалы Э/Э у них обоих близки к —1,5 в. Титан обычно не образует ионов Ti . [c.329]

    По химической активности и другим химическим свойствам больше всего к щелочным металлам должны приближаться элементы, соседние с ними в периодической системе, образующие главную подгруппу П группы, особенно с большими порядковыми номерами, вследствие этого большими размерами атомов и особенно слабой связью внешних, или валентных, электронов. От атома соседнего щелочного металла атомы элементов рассматриваемого семейства отличаются лишней единицей положительного заряда ядра и добавочным электроном во внешнем слое. Отдавая оба валентных электрона, они обращаются в двукратно положительно заряженные ионы, поэтому во всех соединениях положительно двухвалентны. В качестве представителя таких металлов рассмотрим кальций. [c.132]

    Номер группы периодической системы равняется количеству валентных электронов, находящихся в этой группе элементов. В главных подгруппах помер группы соответствует количеству электронов, находящихся на внеш-етем слое, а в побочных группах номер группы показывает общее количество валентных электронов у данного элемента, т. е. то наибольшее количество электронов, которое атом может отдавать со своего внешнего и предпослед-мего слоя. Исключение составляют элементы восьмой группы и побочной шодгруппы первой группы периодической системы. В восьмой группе, как уже говорилось, не все элементы способны проявлять положительную валентность, равную восьми. Находящиеся в побочной подгруппе первой группы медь, серебро и золото могут проявлять валентность и больше единицы медь бывает двухвалентной, а серебро и золото — трехвалептными. У этих элементов предпоследний 18-й электронный слой еще не является устойчивым. [c.228]


    У благородных газов атомные номера равны 2, 10, 18, 36, 54 и 86. Интервалы равны 2, 8, 8, 18, 18 и 32. За каждым благородным газом следует чрезвычайно химически активный металл, образующий ионы М +. Это щелочные металлы У, Ыа, К, Rb и Сз. Каждому благородному газу предшествует химически активный. ..щелочные металлы неметалл, образующий ионы V . Это галогены стоят друг под другом Р, С1, Вг, I и А1. За щелочными металлами (группа в 1 группе. . 1А, главная подгруппа) следует щелочноземельные металлы Ве, Мд, Са, 5г и Ва,. образующие группу ПА. Галогенам (группа УИБ) предшествуют О, 5, 5е и Те элементы с валентностью, равной 2, свойства которых меняются от неметаллических до металлических. В группы 1ИБ, 1УБ и УБ входят. ..в вертикальные элементы, менее похожие друг на друга. Все они группы входят элементы, проявляют типичную для своей группы валентность, [c.50]

    Алюминий находится в главной подгруппе III группы периодической системы элементов Д. И. Менделеева. Порядковый номер его 13, атомный вес 26,9815. Электронная конфигурация атома алюминия в невозбужденном состоянии ls 2s 2p 3s 3p Валентными являются три электрона s- и р-подуровней последнего слоя, в соответствии с этим алюминий проявляет максимальную валентность 3+. [c.9]

    В главные подгруппы попадают s- н р-элемепты, у которых валентными являются s- и р-электроны. Сумма 5- и р-электронов на внещнем уровне равна номеру группы. В побочных подгруппах расположены элементы, в атомах которых происходит заполнение -подуровней предпоследнего уровня. У этих элементов помимо s-электронов внешнего уровня валентными могут быть также -электроны с предпоследнего уровня. Взглянув на периодическую таблицу и подсчитав у какого-нибудь элемента побочной подгруппы П1—VH групп сумму этих S- и -электронов, нетрудно убедиться, что она равна количеству валентных электронов элементов главной подгруппы той же группы. Таким образом, можно сказать, что в основе построения короткой формы периодической таблицы (напомни . еще раз, что она была предложена Д. И. Менделеевым еще в 1871 г. ) лежит заполнение электронами внешнего уровня с учетом -электронов на предпоследнем уровне. [c.117]

    Магний расположен в главной подгруппе второй группы периодической системы элементов Д. И. Менделеева. Порядковый номер его 12, атомный вес 24,312. Электронная конфигурация атома-магния в невозбужденном состоянии 1х 25 /) 35 валентными являются электроны наружного слоя, в соответствии с этим магний проявляет валентность 2- -. В тесной связи со строением электронных оболочек атома магния находится его реакционная способность. Из-за наличия на внешней оболочке только двух электронов атом магния склонен легко отдавать их для получения устойчивой восьмиэлектронной конфигурации поэтому магний в химич ском отношении очень активен. На воздухе магний окисляется, но образующаяся при этом окисная пленка предохраняет металл от дальнейшего окисления. При нагревании до 600—650° С магний сгорает с образованием окиси магния МдО и частично нитрида [c.8]

    Группа — совокупность элементов с одинаковым числом валентных электронов, равным номеру группы. Валентные электроны s и р соответствуют элементам главных подгрупп, валентные электроны d и f — элементам побочных подгрупп. [c.84]

    Здесь уместно отметить одну важную особенность, свойственную всем элементам побочных подгрупп, кроме ШВ-труппы (подгруппа скандия) усиление химической благородности металлов в пределах группы с увеличением атомного номера элемента. В главных подгруппах и в подгруппе скандия сверху вниз нарастают металлические свойства, а начиная именно с подгруппы титана наблюдается обратная закономерность. С этой точки зрения, элементы IVB-группы, так же как и элементы IVA-группы, являются своеобразной границей, разделяющей две противоположные тенденции. Отмеченное обстоятельство связано с тем, что между IIIB- и IVB-группами вклиниваются семейства /-элементов, что наглядно отражается в развернутой (32-клеточной) форме системы. При этом валентные 6s-электроны тяжелых элементов подгрупп титана, ванадия и т.д., следующих за лантаноидами, обнаруживают эффект проникновения сквозь двойной слой из 5d-и 4/-электронов. Этим и обусловлено ослабление металлических свойств гафния, тантала, вольфрама и т.д. На этой особенности основана интерпретащ1Я закономерностей изменения степеней окисления, кислотно-оснбвных и окислительновосстановительных свойств в группах -элементов. [c.391]

    Таким образом, валентное число инертных газов равно нулю. Чтобы согласовать номер группы инертных газов с максимальной положительной валентностью, как это сделано для остальных групп периодической системы, эта группа была названа туле-вой группой- ) и помещена в начале периодической системы. При непрерывном расположении элементов, принятом в табл. П (см. приложение), инертные газы попадают в восьмую группу в качестве ее главной подгруппы. Такое расположение согласуется с закономерностями периодической системы, так как при уменьшении отрицательной валентности с возрастанием номера группы, начиная с четвертой главной подгруппы, нулевую валентноать следует ожидать для элементов восьмой главно подгруппы. Двойственность положения инертных газов соответствует их особому характеру по сравнению с элементами остальных главных подгрупп. Подробнее об этом будет сказано в следующей главе. [c.126]

    Химические свойства элемента определяются количеством валентных электронов. Очень устойчив при химических превращениях благородногазовый октет (s p ). У типических элементов валентные электроны расположены во внешнем слое. Аналоги лития (см. табл. 5.4) имеют только один валентный электрон (s ) У электронов подгруппы бериллия их два (s ) элементы, составляющие главную подгруппу III группы, во внешнем электронном. слое имеют три валентных электрона (s p ), аналоги углерода — четыре электрона (s p ), азота — пять (s p ), кислорода — шесть (s p ) н, наконец, галогенысемь электронов (s p ). Для типических элементов количество валентных электронов совпадает с номером группы в периодической системе элементов. [c.144]

    Номера периодов п групп получпли физическое обоснование с точки зрения электронной теории. Номер периода равен числу электронных слоёв у атомов данного периода (слои К, L, М, N, О...). Номер группы определяет число валентных электронов у элементов данной группы, причём для элементов всех главных подгрупп и обеих первых групп (I и И) он определяет число электронов во внешнем слое. [c.189]

    Первый период включает всего два элемента, второй и третий периоды — по восемь, четвертый и пятый — по восемнадцать, шестой, седьмой — по тридцать два элемента. Первые три периода называются малыми, а четвертый и с.аедующие—большими. Большие периоды подразделяются на ряды, малые же периоды совпадают с соответствующими рядами. В каждой группе элементы больших периодов подразделяются на две подгруппы — главную и побочную. Элементы малых периодов — второго и третьего — относятся к главной подгруппе. Основанием для помендеиия элементов в ту или иную группу являлась максимально возможная валентность элемента — ее значению соответствует 1юмер группы псключенпе составляют кислород, фтор, неон и элементы побочной подгруппы VIH группы, валентность которых не достигает соответственно шести, семи и восьми, а такл<е элементы побочной подгруппы I группы, валентность которых достигает трех. Номер каждого периода совпадает с числом электронных уровней в оболочках атомов, номер группы — с числом электронов па наружном уровне электронной оболочки, хотя это выполняется только для атомов элементов главных подгрупп. [c.36]

    Для MerajiflOB в соединениях характерно отдавать свои валентные электроны с образованием положительно заряженных ионов. Элементы главных подгрупп имеют число валентных электронов, равное номеру группы. Поэтому [c.73]

    Высшая положительная валентность элементов обычно отвечает номеру группы, причем в высших оксидах и гидроксидах кислотный характер растет слева направо по периодам, а основной — ослабевает. У фтора вообще не обнаружена положительная валентность в соединениях он всегда одновалентен. Положительная валентность кислорода проявляется только в соединениях с фтором и равна двум. Железо, кобальт и никель проявляют высшую валентность соответственно шесть, четыре и три, палладий — четыре, родий, иридий и платина — шесть, бром и астат — пять. У некоторых благородных газов высшая положительная валентность достигает восьми (ХеРв). У элементов подгруппы меди в образовании валентных связей могут участвовать с1-злектроны предпоследнего уровня, поэтому их высшая положительная валентность оказывается больше номера группы — бывает +1, +2, +3. Эти элементы являются неполными аналогами элементов главной подгруппы I группы и вместе с тем продолжают развитие свойств элементов семейства железа и платиновых металлов, к которым они вплотную примыкают в системе элементов. [c.79]

    ГАЛОГЕНЫ (галоиды) — химические элементы главной подгруппы VII группы периодической системы элементов Д. И. Менделеева фтор F, хлор С1, бром Вг, иод I и астат At. Название галогены происходит от греч. hais — соль и genes — рождать. Неправильное название галоиды , которое ввел Г. И. Гесс, означает солеподобный . Атомы Г. имеют конфигурацию валентных электронов присоединяя один электрон, приобретают конфигурацию инертного газа s p . Все Г.— активные неметаллы, непосредственно соединяются с большинством элементов, образуя галогениды. Г.— энергичные окислители, их окислительная способность падает от F к I. Г. в соединениях с электроположительными элементами проявляют степень окисления— 1. С увеличением порядкового номера химическая активность Г. уменьшается, химическгя активность ненов Р , С1 , Вг , 1 увеличивается. С водородом все Г. образуют галогеноводороды — прн обычных условиях газы, из которых по свойствам значительно выделяется НР. Все галогеноводороды хорошо растворяются в воде, образуя сильные кислоты. Кислородные соединения Г. неустойчивы (кроме оксидов I), часто разлагаются со взрывом. Г. и их соединения имеют большое практическое значение в промышленности, в лабораторной практике и в быту. [c.65]

    Из приведенных схем видно, что у трехвалентного хрома, двух- и четырехвалентного марганца число валентных электронов меньше числа неспаренных электронов. Данное обстоятельство, а также некоторые другие особенности элементов побочных подгрупп в сильной степени усложняют вопрос о валентностях этих элементов. Объяснить так наглядно и просто валентности элементов побочных подгрупп даже в их простейших соединениях, как это было сделано для элементов главных подгрупп, не представляется возможным. В отличне от элементов главных подгрупп, для которых максимальная валентность равна номеру группы, для некоторых элементов побочных подгрупп могут наблюдаться валентности больше номера группы. Например, для находящихся в первой группе меди и золота наряду с валентностью единица характерна также валентность два и три соответственно. [c.78]

    В III— VIII группах главных подгрупп расположено 30 р-элементсв и два s-элемента (водород и гелий). В периодах слева направо в атомах р-элементов заполняется электронами р-подуровень от р до р . Валентными являются не только р-электроны, но и s-электроны внешнего уровня атома. Их сумма соответствует номеру группы, в которой расположен элемент, и высшей положительной степени окисления ns p , ns p , ns p , ns p, ns p , ns p . С увеличением числа электронов на внешнем уровне атомов уменьшается восстановительная способность атомов и усиливается их окислительная активность (увеличивается электроотрицательность, сродство к электрону, энергия ионизации элементов). В группах периодической системы сверху вниз у р-элементов заметно усиливаются восстановительные свойства. [c.229]

    Явно выраженная периодичность характерна для энтальпий атомизации простых веществ (рнс. 6). Для элементов малых периодов кривая зависимости энтальпии атомизации от атомного номера нроходит через четко выраженный максимум, приходящийся на элементы IУА-группы (Сал , 31). Это обусловлено, с одной стороны, упрочнением связей в кристаллах по мере увеличения числа валентных электронов от одного до четырех, а с другой — уменьшением прочности кристаллической решетки за счет уменьшения координационного числа ковалентных структур по правилу 8—N после 1УА-группы. Минимумы на кривой соответствуют кристаллам благородных газов, образованным за счет слабых сил межмолекулярного взаимодействия. В больших периодах для 5- и р-элементов (главные подгруппы) эта закономерность также просматривается. Однако на нее накладывается изменение энтальпий в рядах переходных металлов. При этом для металлов первой вставной декады, обладающих кайносимметричными Зй-электронами, наблюдается четко выраженная внутренняя периодичность, обусловленная осо- [c.34]

    Кислород — элемент с порядковым номером 8, его относительная атомная масса 15,999ж1 . Находится во втором периоде, в главной подгруппе VI группы. Электронное строение атома кислорода и его валентные возможности рассмотрены выше. [c.355]

    Каждый период начинается с s-элемента, которые находятся в IA- и ПА-подгруппах (А — главные подгруппы), уО-элементы находятся в 1ПА- и VIIIA-под-группах. Следовательно, суммарное число валентных (внешних) S- и р-элементов равно номеру группы в периодической системе. Например, электронная формула элемента 2-го периода VIA-подгруппы будет оканчиваться. ..2s 2p (2 + 4 = 6), а электронная формула элемента 5-го периода ПА-подгруппы —. . . (2 + 0) Tl т. д. [c.74]

    Перед детальным обсуждением структурной химии этих элементов необ.ходимо обратить внимание на одну особенность, прису-П1ую. многим из нпх. Уже от.мечалось ранее, что элементы Си, Ag и Аи могут использовать для связи d-электроны с главным квантовым числом на единицу меньшим, чем у s- и р-орбиталей, причем медь может терять 1 или 2 Зс -электронов и образовывать ионы Си + и Си +. Однако некоторые элементы последующих Б-подгрупп ведут себя совершенно иначе. Кроме образования обычного иона с потерей всех N электронов внешней оболочки N — номер группы в периодической системе) может происходить потеря только р-электронов, а пара s-электро-пов оставаться связанной с ядром в виде так называемой инерт-нон пары. В случае одноатомного иона это означает, что М должен иметь по крайней мере 3 электрона в валентной оболочке и, следовательно, необходимо искать подтверждения факта существования ионов у металлов группы П1Б и нонов в группе IVB. В состоянии одноатомного газа ртуть сохраняет структуру 78 (2) тогда ион (Hg—ng) + (еслн бы такой свободный ион существовал) сохранял такой же эффективный атомный номер (к этому вопросу мы вернемся позже). Чрезвычайно низкую степень ионизации галогенидов ртути Сиджвик рассматривал как доказательство инертности пары бх-электро-нов Hg, однако нет сомнения в том, что в кристаллическом HgFa (структура флюорита) присутствуют ионы Hg +. Доказательство существования нонов можно получить, изучая свойства соединений в растворах нли в расплавах, а также природу нх кристаллических структур. [c.287]


Смотреть страницы где упоминается термин Валентность элемента и номер главной подгрупп: [c.65]    [c.26]    [c.537]    [c.78]    [c.246]    [c.287]    [c.61]   
Аккумулятор знаний по химии (1977) -- [ c.44 ]

Аккумулятор знаний по химии (1985) -- [ c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Валентности главные

Главная подгруппа

Номер

Элемент главный

Элементы номер



© 2025 chem21.info Реклама на сайте