Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

аллий применение

    Олефины, направляемые на химическую переработку, за немногими исключениями (например, хлорирование пропилена в хлористый аллил для дальнейшего синтеза глицерина или полимеризация этилена для производства полиэтилена и др.), могут содержать значительные количества парафиновых компонентов. При химической переработке парафиновых углеводородов, наоборот, присутствия олефинов не допускается. Поэтому при применении крекинг-1 азов в качестве исходного сырья олефины необходимо предварительно или насытить путем каталитической гидрогенизации (к тому же крекинг-газы одновременно содержат заметные количества водорода), или отделить от парафинов при помощи химических процессов. После этого парафиновые углеводороды могут быть использованы для химической переработки. [c.16]


    Рассмотрим применение метода Хюккеля к полиенам на примере радикала аллила и молекулы бутадиена. [c.219]

    Наиболее важное применение аллиловый спирт находит в производстве термостойких смол, получаемых из эфиров двухосновных кислот аллило-вого спирта, например диаллилфталат. [c.280]

    Аллилбензол получают из бромистого фенилмагния и бромистого аллила . Малеиновый ангидрид был применен продажный. [c.497]

    Бромистые алкилы лучше всего получать из соответственных спиртов. При этом на спирты обычно действуют следующими реагентами трехбромистым фосфором, бромидом металла и серной кислотой , концентрированной или дымящей бромистоводородной кислотой, часто под давлением , и водной бромистоводородной кислотой по методу предложенному Норрисом . Бромистые аллил пропил и изобутил были получены видоизменением этого последнего метода бром восстанавливался сернистым газом, добавлялся спирт и смесь подвергалась перегонке. Существуют две основных модификации этого метода добавление концентрированной серной кислоты и кипячение с обратным холодильником до перегонки. Аналогичные модификации существуют и для метода с применением бромистого натрия. Более чистые бромистые алкилы были получены при небольшом изменении в методе очистки . Ввиду того, что в настоящее время триметиленгликоль стал побочным продуктом при очистке глицерина, он является удобным сырьем для получения бромистого триметилена. Был также описан метод с применением газообразной бромистоводородной кислоты . Однако было [c.121]

    Жидкий хлор — очень удобное сырье для большого числа хлор-потребляющих производств как на территории хлорных заводов, так и вне ее. Для ряда предприятий особое значение имеет применение хлора высокой концентрации. Так, в процессе хлорирования по цепному механизму примеси кислорода в хлоре затрудняют протекание реакции. Поэтому, несмотря на то что хлор, полученный испарением жидкого хлора, значительно дороже хлора, непосредственно получаемого из цеха электролиза, на некоторых предприятиях предпочитают работать на более чистом, хотя и более дорогом, испаренном хлоре. К числу таких производств относятся производства синтетического хлористого водорода для нужд гидрохлорирования ацетилена, хлористого аллила хлорированием пропилена, гексахлорциклогексана фотохимическим хлорированием бензола, хлорирование полихлорвинила, полиэтилена и других продуктов. [c.314]


    При применении аллил- и бензилгалогенидов возможна перегруппировка первоначально образующихся N-алкилиро- [c.27]

    В работе для корреляции аЩ 298 К,е) алифатических спиртов и эфиров использована схема Аллена .Применение этой схемы к теплотам образования 26 соединений (15 спвртов и [c.487]

    Недавно фирма Шелл разработала новый метод получения глицерина из пропилена через акролеин и хлористый аллил с применением перекиси водорода, вырабатываемый также из пропилена через изопропиловый спирт. Указанный метод является весьма перспективным. В Норко (штат Луизиана) пущен завод, работающий по этому принципу. [c.78]

    Зажным обстоятельством является выбор температуры и соотношения реагентов. При получении аллил- и металлилхлорида целевыми являются продукты введения одного атома хлора, поэтому процесс ведут при избытке соответствующих углеводородов, но при не слишком большом, так как дихлориды тоже находят применение. Если мольное отношение углеводородов к хлору составляет 5 1 при синтезе хлористого аллила и 2 1 при получении металлилхлорида, выход этих хлорпроизводных доходит до 80%, при 1ем избыток углеводорода отделяют и возвращают на реакцию. Пр производстве хлористого аллила выбор температуры обусловлен высокой селективностью замещения по сравнению с присоединением (см. рнс. 33, стр. 102), я реакцию проводят прн 500—520 °С. В случае металлилхлорида, когда присоединение незначительно, процесс осуществляют прн 150—200°С. Наконец, синтез дихлорбу-ТИЛ1Ш0В ведут при 300°С и избытке бутадиена. [c.120]

    Конкуренция разных функциональных групп изучена на примере соединений аллильного типа. Чаще всего реакция этих компонентов с бензолом приводит к получению 1,2-дифенилпро-пана. Применение мягких катализаторов позволяет выделять аллилбензол и алкилхлорпроизводные ароматического ряда. При насыщении НС1 смеси бензола и А1С1з и последующем добавлении хлористого аллила с высоким выходом получается н-пропилбензол. [c.136]

    В отношении дальнейшей переработки новых продуктов, ставших доступными благодаря этим интересным открытиям, обстоятельства были совершенно аналогичны тем, которые наблюдали для реакции прямо1 о нитрования парафиновых углеводородов, открытой Коноваловым. Несмотря на воз-мол<ность применения хлористого аллила и его аналогов для боль пого числа очень ценных синтезов, ввиду чрезвычайной подвижности хлора в этих соединениях химики не обращали на них достаточного внимания. (Збъяснить, пожалуй, это можно тем, что сами моноолефины в те времена были мало доступны. [c.353]

    Пат. 1557589 Франция. Применение реакторов, снабженных механическими мешалками и вращающимися лопатками, для производства дихлоргидринов из хлористого аллила в тонком слое / Т. Reis // РЖХим.- 1970.- 5Н 299П. [c.156]

    Основным промышленным применением хлористого аллила, помимо производства синтетического глицерина, является получение аллилового спирта и эпихлоргидрина. Оба эти продукта используются главным образом в промышленности искусственных смол. Хлористый аллил служит также исходным продуктом в производстве бромистого аллила, циклопропана (применяется в химико-фармацевтической промышленности), ди-хлоргидрина глицерина [18], а также сложных эфиров, напримео аллил-крахмала. [c.174]

    Пропилен используют для получения из него ацетона, додецена (тетрамера пропилена), н-бутилового спирта, глицерина и окиси пропилена. Производство ацетона продолжает оставаться главным потребителем пропилена. Этот кетон применяют в качестве растворителя для производства растворителей, полимеров и уксусного ангидрида. Додецен является полупродуктом в производстве наиболее широко применяющегося синтетического моющего средства — натриевой соли изододецилбензолсульфокислоты. В этой области он конкурирует со многими другими химическими продуктами, получаемыми из нефти. Нормальный бутиловый спирт все еще производят как из синтетического этанола, так и сбраживанием растительного сырья н-бутанол применяют для производства растворителей и пластификаторов. Особенно интересным продуктом, получаемым на основе пропилена, является синтетический глицерин. Хлорный метод производства глицерина из пропилена (через хлористый аллил) разработан еще перед второй мировой войной, однако вплоть до 1949 г. он не внедрялся в промышленность. К 1949 г. производство искусственных моющих средств — еще одна отрасль нефтехимической промышленности — развилось настолько, что появилась угроза сокращения в мировом масштабе ресурсов глицерина, который является неизбежным побочным продуктом мыловаренной промышленности. Глицерин находит себе различное применение, и, естественно, очень трудно балансировать его потребление и производство при условии, что последнее лимитируется спросом на мыло. Поэтому в снабжении глицерином наблюдались циклические фазы изобилия и дефицита. Минимальный уровень цен на глицерин, полученный из пищевого сырья, определяется [c.404]


    В данном разделе речь пойдет о процессах галогенирования, под которыми подразумеваются все реакции введения в органические соединения атомов галогенов. Чаще всего это хлор из-за доступности и дешевизны, который получают электролизом раствора хлорида натрия. Хлорирование углеводородов и других органических соединений является очень важньш направлением органического синтеза, поскольку этим методом производят самые различные продукты, находящие широкое применение в народном хозяйстве. Это полупродукты для органического синтеза (хлористый метил, этил, аллил, хлорбензол, хлоргидрины, из которых получают XJюpoлeфины, спирты, окиси олефинов и т.д.) мономеры для получения смол, пластмасс, волокон (винилхлорид, хлоропрен, 1,2-дихлорэтан, монохлортрифторэтилен, тетрафторэтилен и т.д.) различные пестициды, хладоагенты, растворители, медицинские препараты и т.д. [c.75]

    Реакция алкилгалогенидов с ацетиленид-ионами весьма полезна, но находит ограниченное применение [1258]. Хорошие выходы получаются только при использовании первичных алкилгалогенидов, не разветвленных в р-положении, хотя в присутствии ul можно использовать и аллилгалогениды [1259]. При использовании в качестве реагента самого ацетилена можно успешно ввести две различные группы. В качестве субстратов иногда применяют также сульфаты, сульфонаты и эпоксиды [1260]. Ацетиленид-ион часто получают обработкой алкина сильным основанием, таким, как амид натрия. Ацетилениды магния (реактивы Гриньяра этинильного типа, получаемые по реакции 12-19) также часто применяются, хотя они взаимодействуют только с активными субстратами, такими, как аллил-, бензил- и пропаргилгалогепиды, но не с первичными алкилгалогенидами. Другой удобный метод получения ацетиленид-иона заключается в прибавлении алкина к раствору СНзЗОСНг" в диметилсульфоксиде [1261]. Такой раствор можно приготовить, добавляя гидрид натрия в диметилсульфоксид. В другом методе алкилгалогенид обрабатывают комплексом ацетиленида лития с этилендиамином [1262]. Третичные алкилгалогениды вступают в реакцию сочетания при взаимодействии с алкинил-аланами (R = )sAl [1263]. При использовании 2 молей очень сильного основания можно провести алкилирование по атому углерода в а-положении по отношению к концевой тройной [c.222]

    На способности буры в расплавленном состоянии рас-рять оксиды металлов основано ее применение при ивании металлов место спайки посыпают бурой, при рикосновении накаленного паяльника с бурой оксиды аллов растворяются в ней (поверхность очищается) рипой хорошо пристает к поверхности металла. Этим йством буры пользуются иногда и в аналитической 1ИИ для открытия таких металлов, оксиды которых эт с бурой характерное окрашивание. Буру употреб-)т также при нанесении глазури на фарфоровые и [нсовые изделия, в производстве высококачественных <ол, огнеупорных эмалевых красок, мыла и синтети-ких моющих веществ. [c.373]

    Для получения 1,2-дихлорпропана и пропиленхлоргидрина возможно применение пропан-пропиленовой фракции с содержанием пропилена 20— 25%. Хлористый аллил получается хлорированием 97—98%-ного пропилена при 500°. [c.385]

    Видоизменением метода получения иодистых алкилов является применение экстрактора, в котором иод, помещаемый в гильйё, вымывается кипящим спиртом и попадает в сосуд с фосфором, где и происходит реак-ция26.27 применение этого метода к иодированию многоосновных спиртов обычно позволяет заменять на иод только одну гидроксильную группу, стоящую у вторичного углеродного атома. Остальные гидроксильные группы или восстанавливаются, или отщепляются в виде воды с образованием двойных связей. Этим путем из глицерина по лучают иодистый изопропил или иодистый аллил, а из маннита—2-иодгексан2 -2 , [c.421]

    При применении некоторых гомологов хлористого ил. бромистого аллила реакция часто осложняется так называемой аллильной перегруппировкой, в результате которой [c.238]

    Первая серия опытов была проведена с применением воды в качестве ускоряющей добавки (активатора). При работе с насыщенными водными растворами мочевины реакция образования аддуктов протекает достаточно легко. Если же применять твердую мочевину с добавкой небольших количеств воды, то в обычно применяемых условиях образования аддуктов реакция, наоборот, вообще не протекает или начинается лишь после чрезвычайно длительного индукционного периода. Однако, если к реакционной смеси добавить некоторое количество предварительно полученных кристаллов ад-дук- а ( осевные кгис- аллы ), то реакция протекает достаточно легко, даже в присутствии совсем небольших количеств воды. Поэтому все последующие опыты проводили с прогрессивно возраставшими количествами воды и с обязательным добавлением посевных кристаллов . Как видно из рис. 2, [c.251]

    Если сопротивление нефтепродукта вязкое , то критерий Re должен быть меньше 18, а при инерционном сопротивлении критерий Re должен быть больше 18. Предел применимости для уравнения (214) при Re > 3, для (212) — Re < 3, для (217) — Re 2,66. Таким образом, границы применения уравнений Стокса, Аллена, Риттингера и Озеена неопределенны. Поэтому выбор уравнения для каждой области дисперсности частиц, определяющей их скорость оседания, требует дополнительного обсуждения. При ламинарном режиме оседания Re < 0,2, для турбулентного режима Re > 500. При числах Re = 0,2 ч-500 наблюдается промежуточный режим оседания. Важной характеристикой процессов оседания является коэффициент сопротивления [c.167]

    Зависимость Ч " (Re) выражается кривой Рэлея (рис. 36). Непрерывность кривой свидетельствует об отсутствии резких скачков между ламинарным и турбулентным режимами. На рис. 36 нанесены штриховые прямые линии, отвечающие уравнениям Стокса, Риттингера, Аллена и Озеена. Видна область применения этих уравнений в зависимости от и Re. [c.167]

    Настоящая пропись является видоизменением метода, который описал Кортиз . Применение хлористого, а не бромистого аллила объясняется его более низкой стоимостью. Диаллил был получен действием патрия или алюминия на иодистый аллил сухой перегонкой йодистой аллилртути или действием на нее раствора цианистого калия действием магния на бромистый аллил , хлористый аллил , иодистый аллил или на 1,2,3-три-бромпропан . [c.148]

    Улучшенный способ получения цианистого аллила (нитрила 3-бутеновой кислоты) состоит в следующем. В сухую (промытую абсолютным спиртом и абсолютным эфиром) трехгорлую колбу емкостью 500 мл, снабженную механической мешалкой (стр. 225) и шариковым холодильником высотой 90 см, установлеппым вертикально и защищенным хлоркальциевой трубкой, помещают 85 г сухой цианистой меди (продажной или приготовленной, как было указано ранее , и высушенной в течение 72 час. в сушильном шкафу при 110 непосредственно перед применением), 0,25 г иодистого калия и 72,5 г хлористого аллила (высушенного над хлористым кальцием и свежеперегнанного т. кип. 45—47°). Пускают в ход мешалку и нагревают смесь на водяной бане примерно через 6 час. реакция в основном заканчивается, что можно заметить по прекращению кипения. После этого нагревание продолжают в течение еще 1 часа. Если синтез проводят с большими количествами реагентов, то в случае бурного кипения приходится отставлять водяную баню, чтобы уменьшить интенсивность протекания реакции. Обычно это случается через [c.139]

    Аллилтрифенилолово приготовляют следующим образом. В 3-литровую трехгорлую колбу, снабженную обратным холодильником, механической мешалкой, трубкой для ввода азота и капельной воронкой емкостью I л с отводом для выравнивания давления, помещают 50 г (2,1 г-атома) магниевых стружек и 800 мл диэтилового эфира. В капельную воронку наливают раствор 120 г (1,0 моль) бромистого аллила (высшего качества) и 250 г (0,65 моля) хлористого трифенилолова в 600 мл тетра-гидрофурана последний перед применением следует перегнать над алюмогидридом лития. Этот раствор прибавляют в течение 7 час к энергично перемешиваемой кипящей суспензии магния. После того как прибавлен весь раствор, приливают 500 мл сухого бензола и реакционную смесь нагревают до 60° в течение ночи (раствор при этом кипит). Затем реакционную смесь гидролизуют, для чего осторожно прибавляют 150 мл насыщенного раствора хлористого аммония. Декантацией отделяют органическую фазу от осадка и последний дважды промывают эфиром. Соединенные органический слой и вытяжки выпаривают при пониженном давлении, пользуясь выпарным аппаратом вращающегося типа. Твердый остаток перекристаллизовывают из 350 мл лигроина. Выход препарата составляет 190—205 г (75— 80% теоретич.) т. пл. 73—74°. [c.35]

    Успешное применение ТГФ вместо эфира в качестве растворителя в реакции Гриньяра привело к его использованию при получении других металлоорганических соединений [81, 104] так, в случае литийорганических соединений при использовании ТГФ ускоряется реакция и повышается выход [34]. Однако следует подчеркнуть, что в некоторых случаях эфир как растворитель имеет преимущество перед ТГФ (например, при получении алкилмагнийгалогенидов). При этом реакция Вюрца конкурирует с реакцией образования соединения Гриньяра выход продуктов реакции Вюрца в ТГФ возрастает в ряду С1<Вг<1 (это наблюдается также в случае бе.нзил-, аллил- и пропаргил- [c.11]


Смотреть страницы где упоминается термин аллий применение: [c.411]    [c.425]    [c.452]    [c.168]    [c.185]    [c.190]    [c.121]    [c.368]    [c.38]    [c.674]    [c.265]    [c.53]    [c.33]    [c.38]    [c.39]    [c.288]    [c.202]    [c.777]    [c.175]    [c.417]   
Общая и неорганическая химия (1981) -- [ c.349 ]




ПОИСК





Смотрите так же термины и статьи:

Аллил

Хлористый аллил применение

аллал



© 2025 chem21.info Реклама на сайте