Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотная ошибка индикаторная

    Выбор индикатора или оценку его пригодности можно сделать также на основании индикаторных ошибок титрования. При титровании слабой кислоты может возникнуть гидроксидная и кислотная индикаторные ошибки. Гидроксидная ошибка рассчитывается по формуле (10.2). Если при титровании 0,1 М уксусной кислоты в качестве индикатора взять фенолфталеин с рГ 9,0, [c.199]


    Элементы постоянных и пропорциональных погрешностей в той или иной форме можно выделить почти в любом методе и на каждом отдельном этапе химического анализа. Так, в кислотно-основном индикаторном титровании при определении концентрации сильных кислот или оснований наблюдается протонная АСр + или гидроксильная ошибка, абсолютное значение кото- [c.34]

    Окраска индикаторов метода кислотно-основного титрования меняется в определенном интервале значений pH часто не строго в точке эквивалентности, а с некоторыми отклонениями как в ту, так и в другую сторону. Эту погрешность называют индикаторной ошибкой титрования. [c.340]

    Таким образом, возможны четыре индикаторные ошибки титрования в методе нейтрализации водородная, гидроксильная, кислотная и щелочная. [c.349]

    Щелочная ошибка титрования — ошибка, вызываемая присутствием в титруемом растворе по окончании титрования нейтральных молекул недотитрованного слабого основания. См. таюке Кислотная ошибка. Индикаторная ошибка. [c.355]

    При вычислении соответствующих индикаторных ошибок всегда следует указывать и их знак. Так, если при титровании кислоты наблюдается протонная или кислотная ошибка, то это означает, что часть кислоты осталась не оттитрованной в конечной точке и, следовательно, ошибку нужно обозначить как отрицательную. Если при титровании кислоты получилась гидроксильная или основная ошибка, т е. прибавленное количество основания больше эквивалентного, то эта ошибка обозначается как положительная. При титровании оснований кислотами знаки соответствующих ошибок противоположные. - [c.253]

    Разработка методик количественного потенциометрического и визуального индикаторного титрования веществ кислотно-основного характера и их смесей в различных растворителях путем экспериментального поиска оптимальных условий — длительный и трудоемкий процесс. Поэтому теоретические способы прогнозирования представляют несомненный интерес. Это прогнозирование может быть осуществлено путем построения теоретических кривых титрования [1, 2,4, 7, 9—13], на основе ОШК и потенциалов полунейтрализации [15—17], исходя из показателя титрования и расчета ошибок Роллера [17, 18], по индексу крутизны кривой в точке эквивалентности [4], расчетом относительной ошибки титрования [19], на основании условных констант устойчивости кислот или оснований, а также констант равновесия обратных реакций [14, 20], исходя из полулогарифмических кривых титрования [7, 21], путем расчета скачков потенциала вблизи точки эквивалентности [22]. Все описанные методы прогнозирования имеют определенные ограничения, так как в их основу положены математические описания, имеющие некоторые упрощения. [c.6]


    Однако точка максимального наклона кривой потенциометрического титрования достаточно часто не соответствует точке эквивалентности. Это происходит в тех случаях, когда определяемые ионы и ионы титранта имеют различные заряды, т е. стехиометрия реакции отличается от соотношения 1 Г Точка максимального наклона -образной кривой находится с той стороны от точки эквивалентности, где в избытке присутствует ион с меньшим зарядом. Ошибка титрования возрастает при увеличении произведения растворимости осадка в осадительном титровании, при уменьшении силы кислоты или основания в кислотно-основном титровании и при уменьшении прочности комплексов в комплексонометрическом титровании. Несовпадение точки эквивалентности и точки максимального наклона наблюдается также тогда, когда индикаторный электрод обратим лишь к одному из титруемых ионов или крутизна электродных функций к титруемому иону и иону-титранту различна. [c.248]

    Индикаторная погрешность титриметрических методов является систематической. Она может быть как аддитивной, так и мультипликативной. Например, в методе кислотноосновного титрования в случае сильных протолитов выделяют протонную ошибку, которая не зависит от концентрации титруемого протолита кислотного характера  [c.106]

    Для количественного изучения механизмов реакций, идущих с участием катионов кетонов, необходимо иметь данные по их основности. Алифатические кетоны являются относительно слабыми основаниями бутанон-2 и пентанон-3 в водной серной кислоте, содержащей ж80 /о кислоты по весу, при 25 °С протонируются наполовину (Яо —7,6). Точные измерения основностей такого порядка затруднительны из-за реакций конденсации кетонов. Для оценки термодинамических значений рК обычно приходится использовать методы определения функции кислотности, которым присущи потенциально большие ошибки [446]. Более ценными могут оказаться методы, использующие теплоты протонирования, а не измерения индикаторного соотношения [447]. Избранные данные для многих кетонов имеются в [446, 447], более новые измерения — в работах [448, 449]. а,р-Непредельные кетоны обладают значительно большей основностью, чем их насыщенные аналоги. Например, циклогексен-2-он наполовину протонируется в л 65%-ной серной кислоте (Но —5,0 0,2), а циклогексанон — [c.665]

    Следовательно, если титруется основание и индикатор находится также в основной форме, то индикаторная ошибка положительная. Если титруется кислота в присутствии основной формы индикатора, то та же индикаторная ошибка будет отрицательной. При титровании кислоты или основания в присутствии кислотной формы индикатора ошибку, обусловленную появлением основной его формы, можно вычислить по уравнению  [c.65]

    Неточности определения pH могут зависеть от солевой ошибки, обусловленной высокой концентрацией солей в растворе, изменяющей растворимость и диссоциацию индикатора белковой ошибки, связанной с наличием в растворах белковых веществ (кровь, плазма и др.). Белки, обладающие амфотерными свойствами, могут взаимодействовать как с кислотными, так и с основными индикаторами, а также адсорбировать индикатор, в результате чего произойдет изменение общей концентрации его в испытуемом растворе индикаторной ошибки, обусловленной добавлением значительных количеств индикаторов, которые, являясь хотя и [c.93]

    Если эта избыточная кислота является сильной и, следовательно, присутствует в растворе в виде свободных ионов Н , ошибку называют водородной , или H -ошибкой . Наоборот, если кислота является слабой и присутствует аочти исключительно в виде недиссоциированных молекул (НА), решающее значение имеет кислотная ошибка , или НА-ошибка . Точно так же, если избыточное основание является сильным, оно обусловливает возникновение гидроксильной ошибки , или ЮН -ошибки если это основание слабое—приходится считаться со щелочной ошибкой , или МеОН-ошибкой . Рассмотрим методику вычисления всех этих четырех типов индикаторных ошибок. [c.294]

    К сожалению, индикаторные методы не всегда безупречны. Они сомнительны, когда присутствуют в значительном количестве белковые веше-, ства или нейтральные соли (белковая и солевая ошибки) или когда можно опасаться изменения значения р от прибавленного индикатора, что особенно легко может произойти в плохо забуференных растворах в пределе Pj 5—9 (кислотная ошибка). [c.316]

    Систематическая индикаторная ошибка. При кислотно-основном титровании значению pH в точке эквивалентности, так называемому показателю титрования, не всегда соответствует pH перехода окраски индикатора, выражаемого в виде показателя индикатора р/Снша- При этом возникает систематическая индикаторная ошибка Р. Ее определяют как разность между количеством С (моль/дм 3) титранта, добавляемого до перехода окраски индикатора, и Со титранта, необходимого для достижения точки эквивалентности  [c.149]

    Определение систематической индикаторной ошибки из диаграммы [до—pH. Систематическую индикаторную ошибку можно определить, нанося на диаграмму lg с—pH титруемой кислоты значение интервала перехода окраски соответствующего индикатора. На рис. Д.57 приведена логарифмическая диаграмма 0,1 н. раствора сильной кислоты и интервалы перехода окраски некоторых индикаторов с допущением, что титрование проводят до первого изменения окраски. При этом отрезок прямой, соответствующий интервалу перехода окраски индикатора, левым концом касается прямых Н3О+ или 0Н соответственно. По уравнению (115) и из диаграммы, приведенной на рис. Д. 57, можно рассчитать систематическую относительную индикаторную ошибку при титровании сильных кислот. В кислотной области сон-<СснзО+. а в щелочной области сНз0+<С0Н-, поэтому / г —СН3О+/С0 или Рг сон-1Со. Значение общих концентраций можно взять из диаграммы, так что ошибку легко рассчитать. [c.151]


    Возможные ошибки при определении pH колориметрическим методом. Неточности определения pH могут зависеть от солевой ошибки, обусловленной высокой концентрацией солей в растворе, изменяющей растворимость и диссоциацию индикатора от белковой ошибки, связанной с наличием в растворах белковых веществ (кровь, плазма и др.) от индикаторной ошибки, так как белки, обладающие амфотерными свойствами, взаимодействуют с кислотными и основными индикаторами, а также адсорбируют индикатор при этом происходит изменение общей концентрации его в испытуемом растворе таким образо.м, добавление значительных количеств индикаторов, которые, являясь слабыми кислотами и основаниями, могут, особенно в незабуференных растворах, изменять значение pH от температурной ошибки, зависящей от изменения константы диссоциации индикатора при колебаниях температуры так, -нитрофенол имеет при 0 С р/С = 7,30, а при 50° С рК = 6,81 с изменением температуры изменяется и pH стандартных растворов. [c.67]

    Грация в 10 раз превышает концентрацию др. формы, т.е. если отношение [InJ/[InJ = [НзС /Кщ равно 0,1 или 10. Изменение цвета И. отмечается в области рН = рК 1, к-рый наз. интервалом перехода И. Изменение наиб, отчетливо, когда [lnj = [1п ,] и К, = [НзО] , т.е. при pH = рК . Значение pH, при к-ром обычно заканчивается титрование, наз. показателем титрования рТ. И. для титрования подбирают таким образом, чтобы интервал перехода окраски ключал значение pH, какое должен иметь р-р в точке эквивалентности. Часто это значение pH не совпадает с рТ используемого индикатора, что приводит к т. наз. индикаторной ошибке. Если в к. т. т. остается избыток неот-титрованного слабого основания или к-ты, ошибка наз. соотв. основной или кислотной. [c.228]

    Золото титруют [470] потенциометрически аскорбиновой кислотой. Оптимальная кислотность 0,02—0,13 N НС1 или H2SO4, температура раствора 60—70° С, титруют в атмосфере Oj с золотым индикаторным электродом. Аскорбиновую кислоту готовят растворением навески кристаллического препарата в 0,02 М HGI, раствор устойчив 3 суток даже при хранении на воздухе. Метод позволяет определять 0,002—0,0495 г Аи с ошибкой 2%. Определению 5 мг Аи не мешают 24,2 мг Pd и 10,6 мг Pt. [c.130]

    Общий термин иидикаторнаи ошибка, применяемый в учебной литературе, объединяет, по существу, три вида ошибок химическую, визуальную (дискриминационную) и собственно индикаторную ошибки. Химическая ошибка обусловлена несовпадением pH (при кислотно-основном титровании), рМ (-lg[ i] — при комштексонометрическом титровании), р1 (-lg[ l ], -lg[Bг ]. 1ё[П — при аргентометрическом титровании) в конечной точке титрования и в точке эквивалентности. Визуальная ошибка обусловлена ограниченной способностью глаза оценивать интенсивность и цветность окраски. Индикаторная ошибка обусловлена взаимодействием индикатора с титрантом или титруемым веществом. [c.64]

    Навеску сплава в платиновой чашке растворяют в смеси НЫОз и НР. Полученный раствор выпаривают до небольшого объема и добавляют к остатку 5 мл Н2 804 (уд. в. 1,84). Нагревают раствор до обильных паров 80з и упаривают до 3—4 мл. После охлаждения добавляют 10 нл воды, смывают содержимое чашки водой в стакан и нейтрализуют 12 N КОН до pH 7 (по индикаторной бумаге). Для создания среды, нужной для экстракции галлия, добавляют такое количество концентрированной НВг, чтобы кислотность раствора была 5 по НВг. Не отделяя осадка ниобия, экстрагируют галлий в делительной воронке тремя порциями эфира по 25 ил. После экстракции к эфирным вытяжкам добавляют 5 мл НС1 (1 10) и эфир удаляют нагреванием на водяной бане. Полученный солянокислый раствор переносят в мерную колбу и разбавляют до метки. Для титрования отбирают аликвотную часть, содержащую 10— 15 мг Оа, разбавляют водой, нейтрализуют раствором аммиака по конго-красному и добавляют в зависимости от содержания галлия 10— 20 мл 0,01 М раствора комплексона III. Раствор нагревают до кипения, а затем охлаждают до комнатной температуры. Добавляют 1 мл аммиачного буферного раствора, / 100 мг ЫН4С1 (рН 8,5 — 9) и индикатор эриохром черный Т. Избыток комплексона оттитровывают 0,01 М раствором соли цинка. Средняя относительная квадратичная ошибка воспроизводимости, вычисленная по десяти анализам, равна (1,5%. [c.197]

    Работа установки проверялась не только титрованием в кислотно основных и окислительно-восстановительных сис темах, но также пу тем определения миллиграммовых количеств галогенид ионов их осаждением ионами серебра, г енерированнымн электрохимически. Определения проводят в бюксе на 75 мл, анодом служит серебро вы сокой чистоты или платина, покрытая серебром, катодом — платиновая спираль, снабженная чехлом. В качестве индикаторного электрода используют серебряную или платиновую проволоку, потенциал ко торой измеряется относительно каломельного электрода сравнения, причем для устранения загрязнения хлоридом последний под.-оединя-н.т с помощью агарового солевого мостика- с 0,1 М раствором а. 0,. При определении хлорида, бромида и иодида в количествах 0,2 - 10 средняя ошибка составляет 0,005 мг. [c.86]

    Индикаторная ошибка. Учет индикаторной ошибки зависит от условий титрования. Если концентрация индикатора в растворе не превышает 0,1% от концентрации титруемого вещества, то ошибка за счет взаимодействия индикатора с титрантом или титруемым веществом пренебрежимо мала и ее можно не учитывать. В тех же случаях, когда концентрация индикатора более 0,1% от концентрации титруемого протолита, индикаторная ошибка может оказаться соизмеримой с химической и ее необходимо учитывать. Знак и величина индикаторной ошибки зависят от используемой формы индикатора и от степени изменения цвета в конце титрования. Если кислотно-основная форма применяемого индикатора совпадает с формой титруемого соединения, то индикатор от-титровывается титрантом и положительная ошибка возрастает. Если индикатор находится в одинаковой форме с титрантом, то он реагирует с титруемым соединением и возникающая при этом ошибка будет отрицательной. [c.64]

    Лазарев [209] предложил титриметрический метод определения вольфраматов и вольфрамовой кислоты титрованием их соляной кислотой в присутствии маннита. При этом образуется комплексная кислота, обладающая более сильными кислотными свойствами по сравнению с вольфрамовой. Конечную точку титрования находят визуально в присутствии метилового красного или потенциометрически с помощью сурьмяного индикаторного электрода и хлор-серебряпого электрода сравнения. При определении 100 — 200 мг вольфрамовой кислоты и 3—400 мг вольфрамата натрия ошибка соответственно 1 и 0,1%. [c.95]

    Результаты количественного определения фторидов показаны в таблице. Во всем исследованном диапазоне концентраций фторидов точность и воспроизводимость анализа удовлетвррительны, и лишь при определении концентраций <3 мг в 25 мл возрастает положительная ошибка. Скачки потенциала индикаторного электрода достаточно велики для надежного определения точки эквивалентности (4000 мв1мл при титровании 1,72 жг фторида) и монотонно убывают с увеличением концентрации фторида. Потенциал электрода устанавливается быстро, и лишь вблизи точки эквивалентности время несколько возрастает и достигает 3—4 мин. Скачок потенциала совпадает с точкой экв1ИБалент1Ности, соответст-вуюш.ей образованию FeF Было исследовано влияние pH анализируемой пробы на результаты потенциометрического определения фторидов. Зависимость относительной ошибки анализа от кислотности среды показана на рисунке. Возрастание положительной ошибки в щелочной среде объясняется образованием гид-р00 Киси железа, а отрицательной к кислой среде — связыванием фторида в плавиковую кислоту. Если принять допустимой точность анализа 5%, то потенциометрическое определение фторидов можно проводить в интервале pH 3—8. Однако, если учесть, что в зависимости от количества анализируемого иона в раствор вводятся различные объемы подкисленного раствора титранта — хлорида железа (pH 1—2), надежным можно считать определение фторида в диапазоне pH 3,5—7. Это согласуется с опубликованными ра- [c.188]

    П], 0,96 [12], 0,(Л [13], 0,20 [I 3, 0,33 [15], 0,37 [1б]. В некоторых из указанных работ значение рК определялось экстраполяцией индикаторного отношения или концентрационной константы к нулевой ионной силе, а также с другими допуцениями, что может привести к значительной погрешности. Нан кажется, что метод функции кислотности дает здесь наименьную ошибку. [c.240]


Смотреть страницы где упоминается термин Кислотная ошибка индикаторная: [c.6]    [c.287]    [c.34]    [c.45]    [c.172]    [c.256]    [c.310]    [c.23]   
Основы аналитической химии Книга 2 (1961) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Ошибка индикаторная

Ошибка кислотная

индикаторный

ошибки



© 2025 chem21.info Реклама на сайте