Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза продукт фотосинтеза

    Злаки и картофель отличаются высоким содержанием крахмала. Его молекулы включают порядка 600 звеньев а-О-глюкозы и имеют разветвленную структуру. Крахмал — продукт фотосинтеза  [c.166]

    Крахмал — один из продуктов фотосинтеза, главное запасное питательное вещество растений. Остатки глюкозы в молекулах крахмала соединены достаточно прочно и в то же время под действием ферментов легко могут отщепляться, как только возникает потребность в источнике энергии. [c.625]


    Углеводы стоят в начале и в конце этого грандиозного, непрерывно проходящего через биосферу потока энергии и энтропии главными продуктами фотосинтеза являются гексозы, а главным источником энергии, удовлетворяющей повседневные потребности всех живых организмов, служит В-глюкоза. [c.137]

    При рассмотрении путей биосинтеза важно идентифицировать хотя бы некоторые из промежуточных продуктов (интермедиатов). Один из них — 3-фосфоглицерат. Поскольку 3-фосфоглицерат является первичным продуктом фотосинтеза, он вполне законно может рассматриваться как исходное вещество, из которого образуются все остальные углеродсодержащие соединения. В большинстве организмов фосфоглицерат может легко превращаться в глюкозу и фосфоенолпируват, которые в свою очередь могут вновь давать фосфоглицерат. Любое из этих трех соединений может служить предшественником при синтезе других органических соединений. Первая стадия биосинтеза включает реакции, в результате которых образуется 3-фосфоглицерат (или фосфоенолпируват) либо из СО2, формиата, ацетата и липидов, либо из полисахаридов [c.457]

    При восстановлении 1 моля СО2 до углеводородного уровня поглощается энергия 469 кДж. При фотосинтезе выделяется свободный кислород, поступающий в атмосферу. Продуктами фотосинтеза являются не только углеводы, но и растительные белки. Весь процесс фотосинтеза в современных зеленых растениях имеет довольно сложный характер. Простым продуктом фотосинтеза является глюкоза, образование которой происходит согласно уравнению [c.359]

    При фотосинтезе очень быстро образуются не только фосфорные эфиры сахаров или простые сахара, но и более сложные формы углеводов — сахароза, крахмал, клетчатка. Появление в листьях крахмала, например, можно наблюдать при помощи известной йодной пробы Сакса через несколько минут после начала фотосинтеза. Крахмал в листьях образуется настолько быстро, что 100 лет назад его даже считали первым устойчивым продуктом фотосинтеза. Почти так же быстро появляются в листьях и другие углеводы. Распад сложных форм углеводов до более простых в ряде случаев в растениях протекает также очень интенсивно. Это наблюдается, например, при прорастании семян, в которых основным запасным веществом является крахмал крахмал, содержащийся в эндосперме, превращается в сахара, используемые развивающимся зародышем. Интенсивный распад сложных форм углеводов наблюдается при старении вегетативных органов растений, когда в листьях преобладают не синтетические, а гидролитические процессы. Образующиеся при распаде простые сахара или их фосфорные эфиры оттекают в репродуктивные органы, где вновь превращаются в более сложные углеводы, которые откладываются в качестве запасных веществ. И, наконец, в растениях очень легко осуществляются и процессы взаимных превращений углеводов. Если путем иньекции или инфильтрации ввести в растение, например, глюкозу, то она очень быстро может превратиться во фруктозу, сахарозу, крахмал и другие углеводы и даже использоваться для построения молекул веществ неуглеводной природы — аминокислот, органических кислот, жиров и т. д. Так же легко подвергаются взаимным превращениям в растениях и другие сахара — сахароза, фруктоза, галактоза, мальтоза и т. д. Все эти факты свидетельствуют о том, что углеводы — очень подвижные вещества и что в тканях рас- [c.140]


    Катаболизм углеводов. Как уже отмечалось при описании круговорота углерода, углеводы-главный продукт фотосинтеза у растений. В то же время для большинства микроорганизмов они служат основными питательными веществами. Поэтому в дальнейшем при рассмотрении питательных веществ-субстратов клеточного метаболизма-мы будем в первую очередь говорить о глюкозе. Что касается других природных веществ, используемых микроорганизмами в качестве субстратов то о них речь пойдет позже в связи с другими явлениями (гл. 14). Макромолекулы, как правило, сначала расщепляются вне клетки выделяемы- [c.215]

    Увеличение содержания аскорбиновой кислоты в присутствии глюкозы и ее образование в семенах до начала фотосинтеза (см. [237]) указывают, что она образуется при окислении сахаров. Поэтому возрастание концентрации аскорбиновой кислоты после интенсивной ассимиляции [244, 251, 258] не обязательно означает, что она является промежуточным продуктом фотосинтеза, хотя эта возможность не исключена. Фотосинтез может увеличивать количество сахаров, способных превращаться в аскорбиновую кислоту. [c.283]

    Многие углеводы и другие вещества, образованные при фотосинтезе, подвергаются сложным превращениям в процессе дыхания растений. Глюкоза — конечный продукт фотосинтеза — содержит значительное количество солнечной энергии, заключенной в ее молекуле. [c.11]

    Если не принимать в расчет потерю энергии квантов света, с чисто химической точки зрения изолированная от внешней среды реакция фотосинтеза представляет собой типичную эндергоническую и эндотермическую реакцию, идущую с увеличением запасов свободной энергии и энтальпии. Так, для реакции (1) А/ я 115, а АЯл 112 ккал/моль. Из общеизвестного соотношения между изменением общей внутренней энергии системы (ЛЯ — энтальпия), свободной (AF) и связанной TAS, где AS— изменение энтропии) энергий AH—TAS + AF следует, что фотосинтез сопровождается некоторым уменьшением запасов связанной энергии, а следовательно, и энтропии. Это вполне понятно, поскольку продукты фотосинтеза (глюкоза и кислород) имеют меньшее число степеней свободы для различных форм движения (большую упорядоченность), чем исходные продукты (вода и углекислота). [c.43]

    Фотосинтетическая деятельность клеток мезофилла обогащает ткани листа сахарами и другими продуктами фотосинтеза. В результате возрастает функциональная активность проводящих пучков. Теоретически существуют два способа транспорта ассимилятов к проводящим пучкам по симпласту (через плазмодесмы и цитоплазму последовательного ряда клеток) и по апопласту (по клеточным стенкам). Однако у многих видов растений между клетками мезофилла и флоэмы плазмодесмы развиты крайне слабо или совсем отсутствуют. В апопласте листовой пластинки может находиться около 1/5 сахаров, содержащихся в листе, и значительная доля свободных аминокислот. Клетки листовой паренхимы сравнительно легко выделяют ассимиляты в наружную среду и относительно слабо их поглощают. Клетки флоэмных окончаний, напротив, способны усиленно поглощать из внешних растворов сахара и аминокислоты против концентрационного градиента с помощью энергозависимых переносчиков. Есть основание считать, что, выходя из паренхимных клеток листа в клеточные стенки, сахароза расщепляется находящейся там инвертаз ой на гексозы (фруктозу и глюкозу), которые в проводящих ч ах в овь образуют сахарозу. [c.104]

    Этот факт говорил против гипотезы электровоза , свидетельствуя в пользу передачи энергии по всей длине трихома. Но в какой форме передается энергия Может быть, это АТФ, глюкоза или какой-либо другой продукт фотосинтеза, образующийся в освещенной части трихома и диффундирующий в его затемненные участки  [c.180]

    Крахмал, макромолекула которого состоит из звеньев глюкозы, представляет собой не индивидуальное вещество, а смесь полисахаридов, отличающихся не только размером макромолекул, но и строением. Крахмал является одним из важнейших продуктов фотосинтеза, образующихся в зеленых частях растений, и составляет основную часть питательного вещества хлеба, картофеля и различных круп. В воде при определенной температуре крахмал набухает и клейсте-ризуется, образуя внешне однородную густую жидкость — крахмальный клейстер, который широко применяют в технике в качестве клея, для шлихтования и отделки тканей, для проклеивания бумаги и т, д. Путем гидролиза из крахмала получают декстрин, патоку и глюкозу, [c.418]

    Крахмал СвНю05)п — полисахарид. Образуется на свету в листьях растений, является конечным продуктом фотосинтеза. В состав К. входят амилоза и амилопек тин. К. дает синее окрашивание с иодом, подвергается гидролизу. Конечным продуктом гидролиза К. является глюкоза  [c.72]

    Из более сложных полисахаридов важное значение имеют крахмал и целлюлоза (клетчатка). Оба они построены из молекул глюкозы, соединенных кислородными мостиками. Крахмал является одним из продуктов фотосинтеза и резервным источником энергии для растений. Клубни картофеля содержат = 20 % крахмала, зерна пшеницы, ржи, кукурузы = 70 %, риса = 80 %. Из целлюлозы (от лат. сеПгйа - клетка) построены ткани растений, именно она придает растениям прочность и эластичность. Хлопковая вата, фильтровальная бумага - наиболее чистые формы целлюлозы (до 95 %). [c.427]


    В процессе биосинтеза высокомолекулярного лигнина участвует ряд мономеров и олигомеров ароматической природы, которые образуются из первичных продуктов фотосинтеза через ряд промежуточных продуктов, таких, как глюкоза, шикимовая кислота, пре-феиовая кислота, фенилаланин, тирозин, производные я-кумаро-вой и феруловой кислот и др. [8]. [c.15]

    В нефотосинтезирующих тканях растений основным исходным субстратом синтеза полисахаридов является главный транспортный продукт фотосинтеза — сахароза. Поступающая из фотосинтезирующих органов сахароза может превращаться в клетках в глюкозу и фруктозу с помощью инвертазы, локализованной в плаз-малемме. Глюкоза фосфорилизуется, затем глюкозидный остаток переходит в УДФГ и принимает участие в синтезе полисахаридов. Сахароза может превращаться непосредственно в УДФГ  [c.23]

    По современным представлениям (Бассем, Калвин, 1961), основное количество углекислоты, поглош аемой растением в процессе фотосинтеза, поступает в цикл восстановления углерода путем присоединения к молекуле рибулезодифосфата. Дополнительное количество углекислоты усваивается путем карбоксилирования в цикле трикарбоновых кислот. Таким образом, усваиваемый растениями углерод внедряется прежде всего в состав продуктов углеводного обмена (сахара и их фосфорные эфиры, нуклеотиды типа уридиндифосфата глюкозы), некоторых органических кислот (входящих в цикл трикарбоновых кислот) и аминокислот (серии, аланин, аспарагиновая и глютаминовая кислоты), а также аце-тил-кофермента А. В то же время Ничипорович и сотрудники (см. Ничипорович, 1962) обращают внимание на разнообразие продуктов фотосинтеза в зависимости от спектрального состава света и других условий. [c.108]

    Сахароза, или тростниковый сахар,— дисахарид, состоящий йз глюкозы и фруктозы. Сахарозу синтезируют многие растения, у высщих же животных она отсутствует. В отличие от мальтозы и лактозы у сахарозы нет свободного аномерного атома углерода, поскольку оба аномерньгх атома моносахаридных остатков- связаны друг с другом (рис. 11-12) поэтому сахароза не является восстанавливающим сахаром. В биохимии растений этот дисахарид-своего рода загадка. Дело в том, что если D-глюкоза служит основным строительным блоком как крахмала, так и целлюлозы, то сахароза-основной промежуточный продукт фотосинтеза. У многих растений именно в форме сахарозы транспортируются по сосудистой системе сахара из листьев к другим частям растения. Преимущество сахарозы перед глюкозой как транспортной формы сахаров заключается, вероятно, в том, что ее аномерные атомы углерода связаны друг с другом это предохраняет сахарозу от атаки окислительных или гидролитических ферментов в процессе ее переноса из одной части растений в другую. [c.310]

    Важным ключом к пониманию механизма фиксации СО2 у фотосинтезирующих организмов послужили работы Мелвила Кальвина и его сотрудников в Калифорнийском университете в Беркли, вьшолненные в конце 40-х годов. Исследователи освещали суспензию зеленых водорослей в течение всего нескольких секунд в присутствии радиоактивной двуокиси углерода ( СОг), а затем быстро убивали клетки, экстрагировали их и хроматографическими методами определяли, в каких метаболитах радиоактивный углерод появлялся раньше всего. Первым соединением, включившим Метку, оказался 3-фосфоглицерат, один из промежуточных продуктов гликолиза (разд. 15.76). Расщепление этого соединения показало, что радиоактивный углерод сосредоточен главным образом в карбоксильной группе. Это бьшо очень важным открытием, потому что в животных тканях в присутствии радиоактивной СО2 не наблюдается быстрого включения метки в углерод карбоксильной группы. Полученные результаты, следовательно, давали все основания считать, что 3-фосфоглицерат является одним из первых промежуточных продуктов фотосинтеза. В пользу этого говорил и тот факт, что 3-фосфоглицерат быстро превращается в глюкозу в растительных экстрактах. [c.701]

    Крахмал (СвНюОб) . Крахмал — запасное питательное вещество растений. Он является конечным продуктом фотосинтеза. Крахмал образуется на свету в зеленых частях растений. Далее он подвергается гидролизу образующиеся при этом более простые углеводы переносятся в остальные части растения, где частично идут на построение клеток и тканей или используются как источник энергии, а частично превращаются снова в крахмал, который откладывается в виде запасного материала в клубнях и других частях растений. Крахмальное зерно неоднородно и состоит из двух веществ амилозы и амилопектина. Амилоза представляет собой длинную цепочку из многих остатков глюкозы (от 100 до 1000), сое- [c.180]

    Дальнейшая задача состояла в том, чтобы выяснить, какой из трех углеродных атомов фосфоглицернновой кислоты становится радиоактивным. Для этого использовались методы химической деградации. Путем отшепления от фосфоглицери-новой кислоты одного атома углерода за другим и с последующим определением их радиоактивности было установлено, что углерод карбоксильной группы становится радиоактивны.м в первую очередь, а два других углеродных атома — позднее. В выделенных из продуктов фотосинтеза гексозах (глюкоза и фруктоза) наибольшая радиоактивность была найдена в середине цепи, у третьего и четвертого атомов углерода. Эти данные указывали на возможность образования шестиуглеродных сахаров из двух трехуглеродных молекул фосфоглицериновой кислоты в результате соединения двух углеродных атомов карбоксильных групп. Эти два атома попадают в середину углеродной цепи. Схематически образование шестиуглеродных сахаров из фосфоглицериновой кислоты можно представить следующим образом (звездочками обозначены атомы углерода, с наибольшей радиоактивностью)  [c.126]

    На образовании глюкозы, однако, не заканчивается физиологический процесс, происходящий в зеленых листьях растений. Часть продуктов фотосинтеза, встречаясь в зеленом листе с азотсодержащими веществами, поступающими из почвы, нравр-ащается в белок. [c.59]

    Помимо двух обычных гексозофосфатов, в качестве начальных продуктов фотосинтеза бумажной хроматографией были идентифицированы два других моносахарида Д-ряда. Одним из них оказался мояофосфат гептозы седогептулозы — соединения, содержащегося во всех растениях, хотя и в незначительном количестве другим—1,5-дифосфат кетопентозы рибулозы, которая ко времени идентификации ее строения (1952) не была найдена среди природных продуктов. Как было показано позднее, этот моносахарид является метаболитом некоторых микроорганизмов, образующимся в результате окисления глюкозы. Промежуточным продуктом этого окисления оказалась 6-фосфо-глюко новая кислота. Рибулоза находится в таком же отнощении к распространенному П рир одному углеводу альдопентозе — рибозе, как фруктоза к глюкозе. В само м деле, в присутствии фермента фосфопентозизо-меразы рибулозо-5-фосфат обратимо изомеризуется в рибозо-5-фосфат  [c.570]

    Многие авторы определяли относительные количества глюкозы, фруктозы и сахарозы в листьях и изменения этих отношений во время освещения и голодания некоторые из них [29, 37, 46, 51, 52, 55, 57 и 78] пришли к заключению, что при органическом синтезе сахароза предшествует моносахаридам. Это заключение основывается либо на том, что сахароза наиболее распространена в листьях и содержится в них в наибо.иьших количествах, либо на наблюдении, что концентрация сахарозы ближе соответствует дневному циклу фотосинтеза. Однако первичное образование дисахарида кажется а priori невероятным. Иседедователи, защищавшие это представление, игнорируют тот факт, что в листьях, богатых йнвертазой, мальтазой, диастазом и прочими углеводными ферментами, первичные продукты фотосинтеза могут с большой скоростью претерпевать изомеризацию и полимеризацию. Имеются указания [65, 67, 68, 71], что методы убивания листьев (замораживание, высушивание, кипячение иди погружение в спирт) влияют на аналитические результаты это доказывает, что при приготовлении материала могут иметь место существенные энзиматические преобразования. Диксон и Мэсон [56], Пристли [65] и Спёр [68] указывают, что быстрое энзиматическое превращение первичных продуктов (например, гексоз) в запасные вещества (сахароза может быть запасным растворимым материалом) может поддерживать концентрацию первичных продуктов фотосинтеза на более или [c.49]

    Момент наступления равновесия в распределении оттекающих из хлоропластов фосфорилированных соединении наблюдался у фосфоглицериновой кислоты — че-. рез 30 сек. после начала фотосинтеза, у фруктозо-1,6-дифосфата через 1 мин., у фруктозо-и глюкозо-6-фосфа-та после 2—3 мин. Одним из наиболее активных транспортных продуктов фотосинтеза является диоксиацетонфосфат (ДОАФ). В темноте концентрация этого фосфо-рилированного кетосахара очень низка и в хлоропластах и в цитоплазме, но при освещении быстро возрастает. Предполагают, что именно в цитоплазме триозофосфат-изомераза катализирует превращение ДОАФ в фосфоглицериновый альдегид, и из них с помощью альдолазы синтезируется фруктозо-1,6-дифосфат и затем сахароза. [c.266]

    В результате выделяется свободный кислород и образуется простейщий сахар — глюкоза. Молекулы глюкозы, выделяя воду, переходят в более сложный углевод—крахмал, являющийся первым видимым продуктом фотосинтеза, легко открываемый в листе с помощью йодной пробы (крахмал окрашивается иодом в синий цвет)  [c.258]

    Процесс фотосинтеза является процессом образования органических соединений, богатых химической энергией, из веществ, бед-нь1х ею. Устойчивыми продуктами фотосинтеза являются глюкоза и кислород. Потенциальная химическая энергия системы глю- [c.317]

    Некоторые электроны возбужденной молекулы хлорофилла вместе с ионами водорода восстанавливают один из переносчиков электронов — трифосфопиридиннуклеотид (ТПН). Восстановленный трифосфопиридипнуклеотид (ТПН-Н), в свою очередь, является воссванавливающим агентом в последующих реакциях. Отцепляющиеся при этом от молекулы воды ионы гидроксила (ОН) теряют электроны, чтобы пополнить их запас в молекуле хлорофилла. В результате образуется газообразный кислород — характерный продукт фотосинтеза, а АДФ, заряжаясь, переходит в АТФ. Синтез глюкозы из СОа и воды происходит в темноте, то есть непосредственно для него свет не требуется. Однако для течения этой реакции необходимы АТФ и ТПН-Н, образующиеся только на свету и служащие источником энергии и восстанавливающим агентом. [c.10]

    В строме располагаются крупные гранулы, которые совершенно бесструктурны и кажутся белыми . Это крахмальные зерна] их присутствие можно считать верным признаком того, что хлоропласт перед фиксацией был фотосинтетически активным, так как продукт фотосинтеза, глюкоза, тотчас же переводится в нерастворимый крахмал. [c.245]

    Фосфоглицериновый альдегид (триозофосфат) играет больщую роль при построении первичных продуктов фотосинтеза. Часть образованного при фотосинтезе фосфоглицеринового альдегида через гексозофосфат используется на построение других органических соединений и не остается в рибулозофос-фатном цикле. В настоящее время считают, что не остающийся в цикле фосфоглицериновый альдегид через фруктозодифос-фат переходит во фруктозо-1-фосфат. Фруктозо-6-фосфат через посредство фермента изомеразы переходит в глюкозо-6-фос-фат. После отщепления фосфорильной группы возникает молекула глюкозы. [c.337]

    Долгое время полагали, что солнечная энергия затрачивается в процессе фотосинтеза на распад СОг с выделением кислорода в атмосферу и соединением углерода с водой. Начальным продуктом фотосинтеза считался формальдегид, хотя он в растениях никогда не был обнаружен. Объясняли это быстрым превращением его в глюкозу 6СНОН->СеН1гОв. Однако в опытах, где применяли радиоактивный углерод, формальдегида в листьях не было обнаружено даже через 30 секунд после начала фотосинтеза. Стало очевидным, что они не образуется. Выяснилось, что не происходит и разложения углекислого газа. [c.43]

    В зависимости от состава, строения и свойств среди углеводов выделяют моносахариды, олигосахариды и высшие полисахариды. Моносахариды содержат в своем составе от двух до семи соединенных в цепочку атомов углерода. Они первичные продукты фотосинтеза. В зависимости от количества атомов углерода, входящих в молекулу моносахарида, различают биозы, триозы, тетрозы, пентозы, гексозы и гептозы. Важнейшими представителями триоз являются глицериновый альдегид и диоксиа-цетон, представителями тетроз — эритроза, пентозы — рибоза, дезоксирибоза, ксилоза и др. гексозы — глюкоза и фруктоза, гептоз — седогептулоза. Моносахариды построены по типу альдегидов или кетонов многоатомных спиртов. [c.209]

    Легкоуловимым продуктом фотосинтеза является крахмал. При освещении зеленой пластинки листа, пользуясь чувствительной реакцией на крахмал (окрашивание в синий цвет раствором йода в йодистом калии), можно установить появление в нем крахмала. Учитывая, что крахмал построен из молекул глюкозы, суммарную реакцию фотосинтеза представляют себе следующим уравнением  [c.230]

    Накопление органического вещества растением за определенный период времени или за всю его жизнь следует рассматривать как разницу между количеством созданного на свету органического вещества и израсходованного на дыхание. Кроме того, во время вегетации в растении могут происходить превращения продуктов фотосинтеза с изменением их массы. Например, масса откладываемой в запас клетчатки на 10% меньше, чем масса глюкозы, из которой она образуется. К этому следует добавить, что отмирание корневых волосков и мелких корешков, сбрасывание частя цветков — потери, происходящие в период вегетации. Поэтому общая продуктивность растения будет определяться не только образованием органических веществ в процессе фотосинтеза, но и величииой всех указанных потерь. [c.226]

    При темновом дыхании растеиий первичные продукты фотосинтеза (глюкозы) превращаются в структурное вещество растения с обновлением структур белковых молекул и поддержанием ионных градиеитов в клетках. [c.270]

    З./Фаза регенерации первичного акцептора диоксида углерода и синтеза конечного продукта фотосинтеза. В результате описанных выше реакций при фиксации трех молекул СО2 и образовании шести молекул восстановленных 3-фосфотриоз пять из них используются затем для регенерации рибулозо-5-фосфата, а один — для синтеза глюкозы. 3-ФГА под действием триозофосфатизомеразы изомеризуется в фосфодиокси-ацетон. При участии альдолазы 3-ФГА и фосфодиоксиацетон конденсируются с образованием фруктозо-1,6-дифосфата, у которого отщепляется один фосфат с помощью фруктозо-1,6-дифосфатазы. В дальнейших реакциях, связанных с регенерацией первичного акцептора СО 2, последовательно принимают участие транскетолаза и альдолаза. Транскетолаза катализирует перенос содержащего два углерода гликолевого альдегида от кетозы на альдозу  [c.92]


Смотреть страницы где упоминается термин Глюкоза продукт фотосинтеза: [c.583]    [c.43]    [c.50]    [c.52]    [c.254]    [c.252]    [c.261]    [c.83]    [c.96]    [c.37]    [c.9]   
Фотосинтез 1951 (1951) -- [ c.49 , c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте