Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упругость энергетическая

    Величины модулей упругости определяются природой упругих сил. Тела, у которых природа упругости энергетическая (металлы, минералы), обладают большим модулем упругости, У газов вследствие кинетической природы упругости модуль упругости оче[[Ь мал. [c.157]

    Теоретическое установление зависимости напряжение — деформация резины для высокоэластического ее состояния исходит из положения, что равновесное деформированное состояние определяется высокоэластической составляющей и что величиной упругой энергетической составляющей деформации можно пренебречь. [c.251]


    Хлорид алюминия, трифторид бора, тетрахлорид титана и т. д. энергично полимеризуют изобутилен при обычных температурах, давая тяжелые сложные жидкости и смолы. Когда температура понижается примерно до —80° С, имеет место энергетическая реакция, которая может контролироваться подбором растворителя. Образуются полибутены с высоким молекулярным весом, свойства которых колеблются от вязких масел до упругих твердых тел класса резины [395, 396]. [c.115]

    Помимо электронных энергетических уровней молекулы обладают еще энергетическими уровнями, связанными с вращательным (рис. 13-30) и колебательным (рис. 13-31) движениями. Вообще говоря, любая линейная многоатомная молекула может вращаться вокруг трех взаимно перпендикулярных осей, проходящих через ее центр тяжести, как это показано на рис, 13-30. Для линейной (в том числе и всякой двухатомной) молекулы одна из этих осей совпадает с прямой линией, на которой находятся ядра всех атомов, поэтому линейные молекулы могут совершать реальное вращение только вокруг двух остальных осей. На рис. 13-31 показаны тины колебаний двухатомной, линейной трехатомной и нелинейной трехатомной молекул. При обсуждении молекулярных колебаний часто оказывается удобным представлять себе, что связи между атомами обладают свойствами упругих пружинок, которые поэтому и изображены на рис. 13-31. [c.583]

    Подобное условие получается с использованием энергетического подхода Гриффитса, согласно которому трещина переходит в неустойчивое состояние, когда скорость высвобождения упругой энергии (<1 ) при образовании трещины в пластине превзойдет прирост поверхностной энергии(ёП). В период устойчивого роста трещины, освобождаемая потенциальная энергия расходуется на образование новой поверхности трещины с1 У = с1П = где у - плотность поверхностной энергии (работа, необходимая для образования единицы свободной поверхности). Освобождаемая энергия W пропорциональна объему полости, образованной трещиной и средней энергии деформации  [c.120]

    Для идеально упругого тела при развитии трещины на величину 58 соблюдается энергетическое условие вида [c.185]

    Сформулируем энергетический критерий равновесия для решения задач теории трещин в идеальном упругопластическом теле. Рассмотрим случай, когда пластическая деформация сосредоточена в узкой зоне перед кромкой трещины (см. рис.3.37,а). Толщина этой зоны порядка упругих смещений. Трещины с тонкой пластической зоной рассматриваются для удобства дальнейшего анализа, который сводится к решению упругой задачи вместо упругопластической. Это сведение основано на том, что тонкая пластическая зона может быть в линеаризированной по- [c.214]


    В таком виде энергетический критерий равновесия совместно с уравнениями теории упругости пригоден для решения конкретных задач теории трещин. [c.218]

    На отрезке — к молекулы А и В не взаимодействуют между собой, поэтому Е, Е% и Ег остаются постоянными. В момент и молекулы подходят на расстояния, на которых начинают проявляться межмолеку-лярные силы притяжения Ван-дер-Ваальса (3-5- 10 1 м). На этих расстояниях интегралы перекрывания МО практически равны нулю. Энергетическое возмущение электронов невелико. При дальнейшем сближении молекул происходит перекрывание МО. Если на МО находятся по два электрона, между ними возникают силы отталкивания, обусловленные принципом Паули. Дальнейшее сближение молекул приводит к изменению расположения ядер и электронной плотности в молекулах. При сближении молекул А и В, когда силы притяжения между молекулами преобладают над силами отталкивания, внутренняя энергия понижается, энергия поступательного движения молекул возрастает. Когда начинают преобладать силы отталкивания, а молекулы А и В в силу инерции продолжают сближаться, кинетическая энергия 2 поступательного движения молекул по линии, соединяющей их центры, уменьшается, внутренняя энергия Ез возрастает. На рис. 186 кривая 1 отражает изменение Е-1 и Еъ при чисто упругом столкновении кривая 2 — столкновение, при котором доля кинетической энергии поступательного движения, переходящая во внутреннюю энергию, невелика, и молекулы разлетаются с незначительно повышенной внутренней энергией кривая 5 характеризует изменение внутренней энергии при столкновениях, когда происходит значительное увеличение внутренней энергии Ел. Вероятность таких столкновений невелика. При столкновениях, заканчивающихся значительным увеличением внутренней энергии, расположение ядер атомов и распределение электронной плотности в молекулах А и В существенно меняется. Когда внутренняя энергия реагирующих молекул достигает максимума (интервал Д/), рас-. [c.560]

    Функция рассеяния для упругого рассеяния на неподвижных ядрах зависит от угла рассеяния. Для некоторых расчетов более удобно бывает оперировать с функциями рассеяния, зависящими от энергии нейтронов, которые получаются непосредственно из энергетически углового соотношения (4.15). Если функция рассеяния определена в зависимости от угла или от энергии, то соответствующую функцию от другой переменной легко получить, заменив переменные. Проиллюстрируем эти преобразования на примере. [c.55]

    Твердые аэрозольные частицы, как правило, испытывают несколько соударений со стенками камеры энергетического разделения, прежде чем происходит процесс сепарации. Для учета этого явления обычно вводится коэффициент отражения частицы при ударе а, который изменяется в пределах 0<а<1,иа = 0 при абсолютно неупругом ударе и а = 1 — при абсолютно упругом. После взаимодействия аэрозольной частицы со стенкой аппарата радиальная составляющая скорости изменяет свое направление, и отраженная частица движется от периферии к центру. При этом скорость радиального смещения будет убывать из-за центробежной силы и силы сопротивления  [c.316]

    На основании полученных формул можно сделать заключение, что контактные напряжения не являются линейной функцией нагрузки. С возрастанием последней они незначительно увеличиваются и в основном зависят от упругих свойств материалов. Это обусловлено увеличением размеров площадки контакта с возрастанием нагрузки. Применяя энергетическую теорию прочности, можно получить эквивалентное напряжение в опасной точке  [c.243]

    Упругие соударения атомов и молекул в химии и энергетические возмущения вакуума [c.43]

    Во многих случаях стационарное состояние (скорости ионизации и рекомбинации одинаковые) можно рассматривать как состояние равновесия, подчиняющееся законам термодинамики, и, стало быть, имеется возможность осуществлять соответствующие термодинамические расчеты. Частным случаем энергетического воздействия является соударение частиц при их беспорядочном движении в газообразном состоянии. Соударение, при котором частицы обмениваются кинетической энергией, получили название упругих в отличие от других — неупругих, прн которых происходит возбуждение атомов и /и отрыв электронов. Такая разновидность ионизации называется термической и связана с температурным уровнем среды. [c.227]

    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]


    Энергетическое упругое деформирование цепи [c.126]

    Отсюда видно, что величины модулей упругости определяются природой упругих сил. Тела, у Kotopbix природа упругости энергетическая (металлы, минералы), обладают большим мо- [c.160]

    Теоретически зависимость напряжение — деформация резины для ее высокоэластического состояния основана на положении, что равновесное деформированное состояние определяется высокоэластической составляющей и что величиной упругой энергетической составляющей деформации можно пренебречь. Выражая величину деформации через составляющие ее компоненты, соответствующие главным нормальным напряжением, можно подобрать координаты, в которых изменение напряжения от величины деформации носит линейный характер. В таких координатах, константа материала не зависит от деформации. В первом приближении в качестве такой константы можно принять равновесный высокоэластический модуль продольной упругости резины. Показано [16], что пропорциональность между напряжением и деформацией в соответствующих координатах и в ограниченных, но практически достаточных пределах деформации с достаточным приближением может быть принята для статической и динамической деформаций, но с разным в каждом конкретном случае модулем упругости материала, который зависит от режима деформации и температуры. В частности, для статической деформации каждому моменту времени и величине напряжения в режиме е = onst будет соответствовать свое значение модуля упругости, изменяющееся от величины Ео — мгновенного модуля, определяющего, упругие свойства резины в начальный период деформации, до Еоо. Промежуточные значения соответствуют или условно-равновесному состоянию (условно-равно-весный модуль упругости), или состоянию при любом времени наблюдения (статический модуль упругости Е-с)  [c.16]

    Если тело массой т падает вертикально (рнс. 3.26, б), то следует учитывать измеиенне его потенциальной энергии прн динамической деформации пружины. Поскольку обычно практический интерес представляют максимальные деформация упругой связи и усилие, можно воспользоваться уравнением энергетического баланса сумма работы nlg (1г + Удип)> которую совершает си.та тяжести mg на пути к, соответствующем высоте падения, и работы при наибольшей (динамической) деформации уд ,, пружины равна потенциальной энергии деформации упругой связи Ру = су% 2 (скорости тела [c.89]

    НОЙ формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра К (рис.2.7). Условием неустойчивости тела с трещиной является КЖкр (быстрое распространение трещины). [c.76]

    Механическая работа внешних сил вызывает соответствующее увеличение энергии деформащ1и. В то же время увеличение длины трещины приводит к релаксации напряжений, что, в свою очередь, вызывает изменение энергии деформации по закону упругости. Отсюда получаем энергетический критерий разрушения  [c.194]

    Во многих случаях наиболее ценным продуктом переработки, является газовый бензин, так как он имеет самую высокую удельную стоимость (стоимость единицы объема). При переработке жидких углеводородов необходимо помнить, что состав получаемых продуктов должен соответствовать существующим спецификациям. Поэтому при переработке лучше получать не готовые продукты (например, газовый бензин), а лишь составные части их, из которых затем компаундируются сами продукты. Благодаря этому значительно упрощается расчет материального и энергетического балансов процесса переработки. При таком подходе считается, что в состав газового бензина входят все пентаны и верхний продукт ректификационной колонны, перерабатывающей углеводородный конденсат. Проблема получения газового бензина как окончательного готового продукта заключается в решении вопроса о количестве легких фракций, которые следует добавить для того, чтобы получить необходимую упругость паров по Рейду. В большинстве случаев эту задачу решают за счет бутанов, так как они имеют более высокую, чем любой газовый бензин, упругость паров. Если с помощью бутанов не удается создать необходимую упругость паров, то добавляется соответствующее количество пропана. [c.78]

    При использовании слабо обогащенных материалов гетерогенные систем1л более приемлемы (если не единственно возмол ны). В гомогенных системах, использующих природный уран в смеси с любым из известных замедлителей, единственным исключением из которых является тяжелая вода, не может быть обеспечена самоподдерж вающаяся цепная реакция, так как эти замедлители обладают большим сечением захвата нейтронов. Такие хорошие замедлители, как графит, бериллий (окись бериллия), обычная вода, требуют применения обогащенного ядерного горючего, а при работе на природном уране необходимо применение гетерогенной структуры. Блочное рас-нолол енне ядерного горючего обеспечивает лучшее использование имеющихся нейтронов, так как в этом случае улучшается возмон(ность поддержания ценной реакции. Нейтроны деления, возникающие в системе с энергией порядка нескольких мегаэлектронвольт, в результате упругих и неупругих столкновений с окружающими ядрами замедляются до тепловых скоросте . Если изобразить энергетическое распределение нейтронов как функцию энергии, то окажется, что основная масса нейтронов сосредоточена в сравнительно узком энергетическом интервале. Целесообразно ввести понятие средняя энергия нейтронов в реакторе . [c.18]

    Упругое ш неупругое рассеяние оказывают значительное влияние на энергетическое распределение нейтронов, так как каждый из. чтих процессов приводит к уменьшению энергии нейтронов. Однако неунругое рассеяние существенно лишь при высоких энергиях нейтронов, от нескольких килоэлектронвольт и выше. Прр1 меньших энергиях определяющим в механизме замедления становится упругое рассеяние. [c.48]

    В излагаемой формулировке многоскоростного приближения все столкновения с рассеянием подразделяются на две категории. К первой категории относят все акты рассеяния, которые вызывают существенное изменение кинетической энергии нейтрона. Сечение этих процессов обозначим символом 2 . Ко второй категории мы отнесли все другие случаи рассеяния с относительно малым изменением энергии нейтрона (которым, по-видимому, можно, пренебречь) их обозначим символом 2 . Окончательное решение того, какие из этих процессов рассеяния включить в каждую из этих категорий, определяется, конечно, вероятным энергетическим спектром нейтронов в рассматриваемом реакторе. Нанример, если в системе имеется значительное количество содержащих водород материалов, то тогда по смыслу этого приближения сечение обычного рассеяния 2 на водороде нужно включить в группу сечений, объединяемых символом 2 . Все другие материалы в этой системе должны вызвать относительно малые изменения энергии нейтрона при рассеянии, и сечения рассеяния этих материалов нужно включить, собственно говоря, в группу сечений, обозначаемую символом 2 . С другой стороны, если рассматривается реактор на быстрых нейтронах, то 2,, должно объединить сечения неуиругого рассеяния всех имеющихся материалов, а 2(. — сечения обычного упругого рассеяния. [c.356]

    Из рис. 3 видно, что возбужденный электрон на II орбите с амплитудой колебаний Дг, пересекает I, II, III орбиты и соответственно электрон на III орбите с амплитудой колебаний Дг- пересекает II, III, IV орбиты. Следовательно, электрон возбужденного атома находится на трех стационарных орбитах. Из этого рисунка также видно, что относительное время пребывания возбужденного электрона II орбиты распределяется Дт, > Дт, > Дтз и соответственно III орбиты ДТз > Дт, > ДХд. Следовательно, возбужденный электрон стационарной орбиты перескакивает на ту орбиту, где меньше время пребывания электрона. По соотношению неопределенностей Гейзенберга между энергией (ДЕ) и временем (Дт) по уравнению (8) с уменьшением Дт значение ДЕ возрастает. Поэтому воз-бужден1Ш[й электрон переходит на ту орбиту, где более интенсивные вакуумные колебания электромагнитного поля и электрон-позитронного поля с более интенсивными энергетическими возбуждениями. Такой переход может осуществляться лишь в том случае, если возбужденное состояние атома водорода достигнуто за время, меньше чем 10 сек. Следовательно, возбужденное состояние атома возникает путем сложения энергий упругих соударений за время существования возбужденного состояния (10" сек). [c.39]

    Таким образом, механизм защитного действия разработанных ингибиторов основан на проявлении ими в коррозионной среде адсорбционно-инверсионного дуализма. С одной стороны, они приводят к образованию на поверхности стали сплошных эластичных адсорбционных пленок, хорошо выдерживающих воздействие на металл упруго-пластических деформаций, с другой - вызывают инверсию лимитирующей стадии катодного пыделения водорода, препятствуя тем самым охрупчиванию стали. При этом на металле образуются мономолекулярные хемосорбционные пленки, увеличивается энергетический барьер ионизации атолюв железа, а сама хемосорбция молекул носит необратимый характер. [c.304]

    Значения второго вириального коэффициента В обусловливаются величиной Л/ , разветвленностью и полидисперсностью полимера, гибкостью макромолекул. Иными словами, коэффициент В может служить мерой отклонения осмотических свойств реального раствора от идеального в результате разбухания молекулярных клубков. Этот процесс, обусловленный осмосом растворителя в молекулярный клубок, предполагает изменение конформаций макромолекул, переход их в новые энергетические состояния. Разница между обоими равновесными энергетическими уровнями соответствует работе упругих сил, стремящихся вернуть молекулу в первоначальное состояние. Разбухание клубков прекращается, когда осмотические силы уравновещиваются упругими. [c.106]


Смотреть страницы где упоминается термин Упругость энергетическая: [c.312]    [c.250]    [c.224]    [c.248]    [c.405]    [c.371]    [c.51]    [c.89]    [c.49]    [c.86]    [c.10]    [c.44]    [c.124]    [c.125]   
Физико-химия полимеров 1963 (1963) -- [ c.158 ]




ПОИСК







© 2025 chem21.info Реклама на сайте