Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межатомные расстояни

    Было предпринято много попыток установить связь между перенапряжением водорода на данном металле и каким-либо другим его физическим свойством каталитической активностью по отношению к реакции рекомбинации свободных атомов водорода, теплотой плавления металла или теплотой его испарения, работой выхода электрона, минимальным межатомным расстоянием в решетке кристалла, коэффициентом сжимаемости и т. п. В результате исследований было отмечено, например, что чем выше температура плавления, тем ниже перенапряжение водорода однако это наблюдение нельзя рассматривать даже как приближенное правило. Бонгоффер (1924) нашел, что чем выше каталитическая активность металла по отношению к реакции рекомбинации атомарного водорода, тем ниже на нем перенапряжение водорода  [c.399]


    Для этого комплекса с плоской конфигурацией были получены следующие межатомные расстояния Н — Н = 0,97 А, I—1=2,95 А и Н—1 = 1,75 А. При этом использовались известные межатомные расстояния в Нг и 1о, [c.255]

    Энергия квантованных уровней молекулы зависит от таких ее структурных параметров, как симметрия, силы связи между атомами, межатомные расстояния и массы атомов. Поэтому детальное исследование энергетиче- [c.292]

    Когда атом 2 находится далеко от молекулы ХУ (верхний левый угол диаграммы), потенциальная энергия системы из трех атомов в основном зависит от межатомного расстояния Гх-у и эта зависимость может быть описана кривой потенциальной энергии двухатомной молекулы ХУ, показанной в верхней части диаграммы. По мере сближения атомов 2 и У начинает [c.140]

    При внимательном рассмотрении рис. V, 1 можно убедиться, что наиболее вероятное состояние системы (при изменении межатомных расстояний гх-у и Гу-г) проходит по некоторой энергетической ложбине , переходит через перевальную точку и по другой ложбине скатывается к конечному состоянию. Эта совокупность наиболее вероятных состояний системы носит название пути реакции (показан на рис. V, 1 жирной пунктирной линией). [c.141]

    Рассмотрим колебания в трехатомной линейной молекуле. Такие молекулы имеют четыре степени свободы колебательного движения (рис. II). Прн колебании V, и изменяется только межатомное расстояние. [c.19]

    Определение межатомного расстояния С—N по вращательно-колебательно электронному спектру [c.70]

    Работа является продолжением работ 8, 9 и 11. На основании экспериментально определенных значений межатомного расстояния [c.70]

    Межатомные расстояния в некоторых многоатомных молекулах, обладающих тетраэдрической структурой [c.475]

    Молекула ХУ< Межатомное, расстояние, А Х-У [c.475]

    Чтобы получить ответ на этот вопрос, приходится обратиться к рассмотрению кристаллического строения алюминия, железа и их оксидов. Структура элементарной ячейки, или межатомные расстояния, в кристаллах алюминия и его оксида приблизительно одинакова поэтому оксид алюминия, образующийся на поверхности металла, крепко пристает к находящемуся под ним некорродированному алюминию. Окисленная поверхность образует защитный слой, препятствующий проникновению кислорода к металлу. Анодированная алюминиевая кухонная утварь имеет оксидный слой повышенной толщины, который получают, помещая алюминиевый предмет в условия, особенно благоприятные для протекания коррозии для этого его превращают в анод, на котором проводится электрохимическая реакция. [c.190]


    Следовательно, половина расстояния между центрами взаимодействующих мож-кул катализатора и реагента равна 4,7-10 см=0,47 нм. Если бы расчет дай завышенный по сравнению с реальным размер межатомного расстояния, это указало бы на стерические затруднения. [c.133]

    ИСХОДИТ перемещение дислокаций, производящих деформацию и работу. Таким образом, дислокации обладают определенной силой и мощностью. Сила дислокации пропорциональна приложенному напряжению к вектору Бюргерса (межатомное расстояние а). Для перемещения единичной дислокации в идеальном кристалле требуется следующее (минимальное) напряжение сдвига Тс  [c.78]

    Таким образом, анализ неустойчивости трещины в хрупком теле на основе силового и энергетического критерия дает один и тот же результат, поскольку величина у считается постоянной материала при заданных условиях (среда, температура и др.). Приближенно у = 0,01 Его (го - межатомное расстояние). Из уравнения Гриффитса следует, что д/2Еу = а- [п1. Выражение <тл/тг называют коэффициентом интенсивности напряжений (КИН) и обозначают для трещины отрыва через Кь Условие неустойчивости представляется в виде К( = К с, (или Кс), где Кс и К1с - критический КИН при плоском напряженном состоянии и плоской деформации соответственно. Критерий Кс (Кк) впервые предложен Ирвиным. Достоинством этого подхода является то, что величина К1 определяет поле напряжений и деформаций в области верщины трещины и поддается расчетному определению. Например, нормальное напряжение Оу, действующее в направлении действия силы, выражается через К1 по [c.121]

    В рассматриваемой модели область пластических нелинейных эффектов размером d (см. рис.3.37,а) меняется с изменением внещней нагрузки и представляет собой пластически деформированный материал, напряженное и деформированное состояние в котором следует определять из решения упругопластической задачи. По предположению толщина пластической зоны 2v(x) в симметричной задаче достаточно мала для возможности линеаризированной постановки задачи, но в то же время она велика по сравнению с межатомным расстоянием, следовательно, в этой схеме напряжения на поверхности дополнительного разреза отличаются от сил межатомного взаимодействия. [c.215]

    Если электропроводность объясняется перезарядкой ионов, зонная теория полупроводников, по-видимому, в простейшем виде неприменима не происходит полного вырождения уровней валентных электронов в отдельных ионах, а сохраняется периодичность в энергетическом спектре валентных электронов кристалла. Катионы решетки находятся в потенциальной яме, так что переход электрона от катиона к катиону требует энергии активации, а длина свободного пробега электрона соответствует междуатомным расстояниям в кристаллической решетке. В таком случае энергия активации определяется не только параметрами атома, образующего катион (т. е. в конечном счете его положением в таблице Менделеева), но и межатомными расстояниями в кристалле, что указывает на значение геометрических параметров кристалла в отношении его каталитической активности. [c.29]

    Группы атомов, заключенные в рамки, находятся на поверхности катализатора части реагирующих молекул, не заключенные в рамки, непосредственно не связаны с поверхностью. Согласно мульти-плетной теории, должно наблюдаться соответствие между межатомными расстояниями и расположением атомов катализатора в мультиплете, с одной стороны, и межатомными расстояниями и расположением атомов в молекулах реагентов, с другой. [c.33]

Рис. Ы5. Зависимость межатомных расстояний Рис. Ы5. <a href="/info/761236">Зависимость межатомных</a> расстояний
    Вследствие кратности связи межатомное расстояние вО2 (0,1207 нм) леньше длины одинарной связи О — О (0,148 нм). По этой же причине молекула О2 весьма устойчива, ее энергия диссоциации равна 494 <Дж/моль (к = 1140 Н/м), в то время как энергия одинарной связи [c.310]

    Межатомное расстояние йуо в ванадильной группировке составляет 0,167 нм, тогда как расстояние ( у-она = 0,23 нм. [c.543]

    Эти исследования — наглядный пример использования стереохимических представлений в катализе. Они свидетельствуют о возможности существования на поверхности катализаторов наборов активных центров, оптимальных для катализа определенных молекул благодаря соответствию межатомных расстояний и углов кристаллической решетки катализатора и аналогичных параметров молекул субстрата. Естественно, что увеличение или уменьшение параметров решетки приведет к изменению геометрии активных центров, а следовательно, к росту или уменьшению скорости реакции в зависимости от улучшения или ухудшения соответствия между реакционным индексом молекулы субстрата и активным центром. Позднее различие каталитической активности гладкой поверхности металлических катализаторов, ступенчатых структур, выступов и пиков на ней наглядно продемонстрировал Соморджай (см. разд. У.5). Приведенные данные являются также серьезными доводами против представлений о гидрировании вдали от поверхности катализатора [15]. Следует также специально подчеркнуть, что представления о существовании на поверхности катализатора оптимальных активных центров получили подтверждение при изучении гидрогенолиза оптически активных соединений [16—20]. [c.13]


    В классической стереохимии при рассмотрении расположения атомов в пространстве принимались во внимание только межатомные расстояния и валентные углы. Уже это позволило понять многие особенности поведения молекул, в первую очередь циклических и оптически деятельных. В основу конформационных представлений положен установленный экспериментально факт, что пространственные взаимоотношения между непосредственно не связанными друг с другом нейтральными атомами определяются не столько их объемами, зависящими от атомных радиусов, сколько эффективными, или ван-дер-ваальсовыми, объемами. Эти объемы, получившие в последние годы название конформационных, гораздо больше атомных (например, атомный радиус водорода равен 0,030 нм, а конформационный — 0,120 нм), и именно ими определяется относительное расположение в пространстве отдельных частей молекул, если только на их взаимоотношениях не сказываются какие-либо другие еще более сильные взаимодействия. В частности, пространственное расположение атомов в молекулах алканов и циклоалканов определяется преимущественно конформационными объемами близлежащих, нп друг с другом не связанных атомов водорода. При сближении этих атомов на расстояния, несколько превышающие сумму их ван-дер-ваальсовых радиусов, между ними возникают силы отталкивания. Когда расстояния между несвязанными атомами равны или близки к этой сумме, силы отталкивания резко возрастают. Дальнейшее сближение или перекрывание ван-дер-ваальсовых радиусов может привести к неустойчивости молекулы и даже к ее разрушению. Под влиянием сил отталкивания все атомы водорода в молекуле стремятся расположиться как можно дальше друг от друга. [c.15]

    Оз, Ке) [86]. Многочисленными исследованиями показано, что перечисленные выше металлы, имеющие гране-центрированную кубическую или гексагональную решетку с межатомными расстояниями от 0,249 нм (для N1) до 0,277 нм (для Р1), действительно являются катализаторами гидрирования — дегидрирования. При плоскостной адсорбции ароматическое кольцо, согласно мультиплетной теории, не покидает активный центр, пока не присоединит (сразу или один за другим) все шесть атомов водорода. При этом вопрос об образовании транс-заме-щенных циклогексанов остается открытым. [c.48]

    В работе Паала и Тетени [251] рассмотрена активность ряда металлов в реакциях гидрогенолиза метилциклопентана и 3-метилпентана и Сз-дегидроциклизации последнего. Изученные металлы разделены авторами на две группы КН, Рс1, 1г и Р1, на которых происходит однократный разрыв молекулы, и Со, N1, Си, Ки, Ад, Ке и Оз, на которых идет фрагментация исходной молекулы на несколько частей. В работе обсуждается также корреляция активности металлов первой группы с геометрией их поверхности (гранецентрированная решетка с межатомными расстояниями 0,269—0,277 нм). [c.169]

    В результате исследования вращательной структуры полос могут быть получены данные о симметрии молекулы. Например, простая тонкая структура вращательно-колебательных полос ацетилена свидетельствует о том, что молекула ацетилена является линейной. Кроме того, в простых молекулах по расстояниям между вращательными ли1шями могут быть определены мпмс ггы инерции, а отсюда может быть получено и межатомное расстояние, если в молекуле, например метана, имеется только одно такое расстояние. Когда в молекуле имеются два различных межатомных расстояния, как в ацетилене, для определения межатомных расстояний необходимо исследовать спектр поглощения двух изотопических форм (в данном случае С2Н2 и СаНО). Это позволяет найти два значения момента инерции, на основании которых могут быть вычислены необходимые расстояния. [c.307]

    Реакционная способность три- и тетрасульфидных связей в 10 больше, чем дисульфидных, а энергия диссоциации соответственно в два раза меньше [13, 14]. Кроме того, связи в тетрасульфиде неравноценны, так как межатомное расстояние центральной связи больше, чем соответствующее расстояние у крайних связей. [c.555]

    Отсюда экспериментально может быть найдена молекулярная константа — момент ннерцин. Зная массы атомов, по уравнению (1,4) можно рассчитать другую молекулярную константу — межатомное расстояние. [c.7]

    Уравнение (1,39) дает возможность на основании экспериментального определения разности волновых чисел соседних полос поглощения вычислять момеьгг инерцни молекулы и межатомное расстояние. [c.11]

    Если измерить среднее значение разности волновулх чисел линий излучения, соответствующих переходам между вращательными уровнями (эти линии отчетливо видны между линиями, соответствуюни1мн колебательным переходам), то возможно но уравнению (1,13) определить момент инерции и по уравнению (1,4) — межатомное расстояние. [c.15]

    Спектры комбинационного рассеяния. Раман-снектры. Колебание атомов в двухатомной молекуле описывается измеиепием колебательной координаты. В качестве колебательной координаты удобно принять разность между межатомным расстоянием и равновесным межатомным расстоянием [c.15]

    Определение межатомного расстояния и частоты основной полосы поглощения H I по вра-щательно колебательному спектру поглощения [c.61]

    Снять спектр поглощения газа подобно съемке спектра поглощения полистирола. 5. Сделать анализ полученного спектра. Отнести каждую полосу поглощения к определенному переходу. 6. Определить значения шкалы длин волн для каждой полосы поглощения в Р-ветви вращательно-колебательного спектра. 7. Определить среднее значение из 10 значений Ло) (разность волновых чисел соседних полос поглощения). 8. Вычислить ио уравнению (111,39) вращательную постоянную В на основании среднего значения Ао). 9. Рассчитать момент инерции. Сопоставить полученную величину со справочной. 10. Рассчитать межатомное расстояние по уравнению (III, 4). П. Определить ио уравнению (III, 38) волновое число основной полосы поглощертя. Сопоставить полученное значение с собственной частотой колебания. [c.62]

    Для вычисления межатомного расстояния необходимо определить среднее значение Леи. Для этого следуег выбрать такие линии в спектре железа, которые совпадают с линиями тонкой структуры. По шкале длин волн спектральных линий железа в атласе (см. рис. 204) определяются длины волн спектрал1>ных линий железа п рассчитываются их волновые числа. Разность волновых чисел делится на п — 1, 1де п — число линий. Момент инерции и межатомное расстояние рассчитывается ио уравпеииям (I, 13) п (I, 4). [c.70]

    Полную вандерваальсову потенциальную энергию можно количественно сравнить с энергией обычных ковалентных связей, рассматривая системы, для которых известны точные кривые зависимости потенциальной энергии от межатомного расстояния г. Значения постоянных параметров а, Ь тл в выражении (14-3) могут быть вычислены из экспериментальных данных по отклонению свойств реальных газов от свойств идеального газа. В качестве примера в табл. 14-2 приведены значения этих параметров для взаимодействий между атомами благородных газов. [c.614]

    На рис. 14-13 показана кривая потенциальной энергии для вандерваальсовых взаимодействий между атомами гелия. При межатомных расстояниях, превышающих 3,5 А, в выражении (14-3) преобладает второй член. При большем сближении атомов они сильнее притягиваются друг к другу2 и энергия системы уменьшается. Однако при расстояниях, меньших 3 А, сильное отталкивание между электронными парами превышает лондоновское притяжение, и потенциальная кривая на рис. 14-13 повышается. Равновесие между притяжением и отталкиванием достигается на расстоянии 3 А, и молекула Не—Не оказывается на 76,1 Дж моль более устойчивой, чем два изолированных атома Не. [c.614]

    С позиций карбонийионного механизма Уитмора, скорость изомеризации связана с константой диссоциации кислоты. Если сравнивать -ряд кислот одного типа Н+А, Н+А, . .. и т. д., для этого ряда зависимость потенциальной энергии от межатомного расстояния Н—А будет одинакова. Потенциальные кривые для реакций олефина (О) с кислотами [c.93]

    Источниками дислокаций (до деформации) являются сегрегация примесей напряжение и дислокационные центры кристаллизации срастание раз.тично ориентированных зерен и субзерен межзеренное общение и др. В отоженном металле число дислокаций достигает Ю см . Пластическая деформация способствует увеличению плотности дислокаций на 5-6 порядков, движению дислокаций и их групп, включая границы зерен. В результате они приобретают сложную форму, увеличивается их длина, общая энергия и сопротивление скольжению. Выход дислокации на поверхность кристалла приводит к сдвигу на одно межатомное расстояние. Следовательно, суммарный сдвиг при начальной плотности дислокаций N0 = Ю5/см2 составит = Ю - Ю - 10- = 10- что соот- [c.78]


Смотреть страницы где упоминается термин Межатомные расстояни: [c.399]    [c.116]    [c.10]    [c.343]    [c.455]    [c.10]    [c.63]    [c.69]    [c.397]    [c.611]    [c.642]    [c.34]    [c.43]    [c.120]   
Теория резонанса (1948) -- [ c.151 , c.153 , c.160 , c.412 , c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Расстояние

Расстояние межатомное



© 2025 chem21.info Реклама на сайте