Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебательно-вращательные спектр тонкая структура

    Инфракрасная спектроскопия а — общий вид колебательно-вращательного спектра б — тонкая структура ИК спектра НС1 (расшифровка полосы Vq общего вида) [c.220]

    Нигде влияние молекулярного окружения на картину ИК-поглощения химических соединений не проявляется так резко, как при переходе от газа или пара к конденсированному состоянию (рис. 5.15). В газовой фазе молекулы оказывают незначительное взаимное влияние на колебание и вращение друг друга. Как уже было показано (стр. 140—143), результирующий спектр представляет собой ряд полос поглощения, каждая из которых состоит из многих узких линий, соответствующих отдельным колебательно-вращательным переходам, и перекрьтает широкую область длин волн. В жидкостях и растворах каждая молекула ограничена клеткой из других молекул, так что они непрерывно сталкиваются друг с другом и уже не могут совершать квантованного вращательного движения. В результате тонкая вращательная структура колебательной полосы исчезает и контур полосы поглощения становится несколько похожим на вероятностную функцию. Причины, вызывающие сильные локальные возмущения, включают дисперсионные силы, диэлектрические эффекты, диполь-дипольные и вандерваальсовы взаимодействия и такие специфические взаимодействия, как водородная связь. [c.175]


    Спектр (рис. 19, а), состоящий из широких полос, получают на спектрометрах низкого разрешения, работающих в широком диапазоне частот. На спектрометрах высокого разрешения становится видна тонкая структура этих полос, состоящих из ряда равноотстоящих узких полос (рис. 19, б). Здесь изображен типичный пример колебательно-вращательного спектра газообразного хлористого водорода, где на основную колебательную частоту Уо, выраженную в волновых числах, накладываются вращательные переходы с более высокого на более низкий уровень, в результате которых энергия квантов превышает у (ветвь К), и переходы в обратном направлении, при которых энергия квантов снижается (ветвь Р). Наложение (суперпозиция) этих эффектов приводит к следующим уравнениям для обеих ветвей, причем вращательный вклад рассчитывается по формуле (58)  [c.221]

    В табл. 2.2 приведены три типа наблюдаемых спектров и величины, которые можно найти из исследований в каждой области электромагнитного спектра. Здесь подчеркнуты некоторые существенные вопросы. Во-пер-вых, если можно исследовать вращательную тонкую структуру спектров, то это позволяет определить параметры молекулы, что можно сделать во всех трех рассматриваемых областях. Во-вторых, данные о симметрии молекул также можно выявить из исследований во всех трех частях спектра. Наконец, изучение электронного спектра не дает никакой новой информации о симметрии или параметрах молекулы по сравнению с тем, что можно получить из чисто вращательных или колебательно-вращательных спектров. Последнее ут- [c.40]

    ЗЗе. Колебательно-вращательные спектры комбинационного рассеяния. Теоретически возможны одновременные колебательные и вращательные переходы при комбинационном рассеянии правила отбора в этом случае одинаковы с теми, которые определяют отдельные переходы каждого вида, а именно Дг = + 1 и Д/ = 0, 2. Вследствие того что возможно условие Д/=0> в спектре комбинационного рассеяния наблюдается линия, соответствующая -ветви. Частота этой линии, которую обозначим ДУо, одинакова с частотой чисто колебательных переходов. Вследствие различия моментов инерции молеку-лы в двух колебательных состояниях ()-ветвь должна в действительности состоять из некоторого числа тесно расположенных линий (параграф 29д). Однако только для водорода, имеющего очень малый момент инерции, удалось разрешить линии, составляющие -ветвь. Тонкая структура несомненно существует и во всех других случаях, но до сих пор она не была еще разрешена. Надо отметить, что двухатомные молекулы, которые обычно не обладают -ветвью в своих колебательных спектрах, имеют -ветвь в спектрах комбинационного рассеяния. [c.252]


    Переходы между двумя электронными уровнями молекулы нуждаются в еще больших энергиях (35—150 ккал моль в зависимости от характера возбуждаемых связей) эти энергии соответствуют видимой и ультрафиолетовой областям спектра. По этой причине электронные переходы непременно сопровождаются многочисленными колебательными и вращательными переходами, а полученный электронный колебательно-вращательный спектр состоит, как правило, из широких полос. При помощи спектрографа с большой разрешающей способностью некоторые полосы можно разделить на несколько более узких полос ( тонкая структура ) в некоторых случаях можно даже различить вращательные линии, сгруппированные в виде систем колебательных полос. [c.102]

    Соотношения величин энергии электронных, колебательных и вращательных переходов схематически показаны на рис. 7.3. Из рисунка видно, что электронным переходам Ь сопутствуют колебательные и вращательные переходы, а колебательным — вращательные. Поэтому в электронных спектрах часто наблюдается колебательно-вращательная тонкая структура, а в колебательных — вращательная. [c.160]

    Гак же как и для двухатомных молекул, каждая электронно-колебательная полоса имеет тонкую вращательную структуру, возникающую при переходах между отдельными вращательными подуровнями верхнего и нижнего электронно-колебательных уровней. Для простейших молекул колебательная и вращательная структуры разрешены и полностью интерпретированы. Из колебательновращательной структуры спектров многоатомных молекул могут быть определены энергия возбуждения верхнего электронного состояния, колебательные и вращательные постоянные и геометрическая конфигурация молекулы в основном и возбужденном электронных состояниях. В табл. 52 для иллюстрации приведены некоторые данные, полученные при исследовании электронно-колебательно-вращательных спектров простых молекул. [c.435]

    При действии фотолитического импульса температура систе.-мы обычно изменяется незначительно, поэтому благодаря малой заселенности возбужденных колебательно-вращательных состояний и, следовательно, относительно небольшой диффузности полос оказывается доступной тонкая вращательная структура электронного перехода, что обеспечивает большую информативность регистрируемых электронно-колебательно-вращательных спектров высокого разрешения. Получаемые таким путем из спектров значения энергий диссоциации и потенциалов ионизации карбенов обычно наиболее надежны. Анализ спектров простейших трехатомных карбенов позволяет определить их основное и низшие возбужденные состояния, энергии перехода между ними, межатомные расстояния и валентный угол, получить сведения о некоторых частотах колебаний (см. [62] ). [c.26]

    Поглощение излучения в близкой инфракрасной области вызывает изменение колебательной энергии молекул. Такие изменения обычно сопровождаются и изменениями вращательной энергии, так что спектр в близкой инфракрасной области (приблизительно от 2 до 15 ммк или от 5000 до 700 слг ) состоит из ряда полос, каждая из которых имеет тонкую структуру (см. приложение, рис. 19). Уровни колебательной и вращательной энергии молекулы изображены схематически на рис. 104. При данном изменении колебательного квантового числа вращательное квантовое число либо остается неизменным, либо меняется на единицу, так что правило отбора для J в ко- [c.329]

    При излучении электронных спектров влияние колебательных и вращательных степеней свободы выражается в том, что вместо одной линии, соответствующей определенному электронному переходу, в спектре проявляется целая серия линий, частоты которых отличаются друг от друга на величину, соответствующую частоте колебаний в свою очередь, каждая линия этой серии имеет сложную тонкую структуру, обусловленную вращением молекулы. Полный набор различных колебательных и вращательных линий, соответствующих одному электронному переходу, образует одну спектральную полосу. Такие спектральные полосы можно увидеть в спектрах газов. [c.7]

    При внимательном рассмотрении спектра излучения молекулы СМ между кантами полос можно легко обнаружить тонкую структуру, соответствующую изменению энергии вращательного движения. Возникновение этих линий в спектре связано с тем, что при изменении электронного состояния происходит изменение и энергии колебательного и энергии вращательного движения. [c.70]

    ИК-спектры газов, как уже отмечалось, имеют тонкую вращательную структуру (см. рис. 7.24), которая определяется наличием одновременно с колебательными и вращательных переходов. В качестве примера на рис. 7.26. приведена колебательно-вращательная полоса ИК-спектра поглощения газообразного метана СН4, имеющая Я—Q—/ -структуру, связанную с правилами отбора вращательных переходов при данном колебательном переходе, а именно для Р-ветви А/=—1 для Q-ветви А/ —0 для / -ветви А/= +1. [c.189]


    Каждому значению Ни соответствует максимум в фотоэлектронном спектре. Поскольку вр, переходы с возбужденных состоянии проявляются либо в виде тонкой структуры, либо в уширении полосы. Разрешение тонкой колебательной структуры для простых молекул в газовой фазе происходит обычно на стандартном фотоэлектронном спектрометре высокого разрешения с вакуумным УФ-возбуждением. Вращательную тонкую структуру можно наблюдать только на приборе с очень высокой разрешающей способностью. [c.263]

    В случае Х2 = С1г наблюдался спектр излучения, характерный для колебательно-вращательных переходов Au = 0, I, 2. При давлениях, достаточно низких, чтобы избежать столкновительной релаксации, во вновь образованной молекуле НС1 наблюдалось излучение до шести колебательных квантов. Колебательная энергия никак не связана с равновесным распределением, хотя тонкая структура спектра показывает, что вращательная энергия находится в тепловом равновесии при температуре, не более чем на 100°С превышающей температуру сосуда, в котором протекает реакция. Энергия экзотермической реакции значительно меньше энергии наблюдаемых шести колебательных квантов однако общая энергия возбуждения соответствует энергии активации образования НС1 (т. е. эквивалентна а + [c.116]

    На основании приведенных рассуждений и рис. 73 можно заключить, что электронные спектры должны быть наиболее сложными, так как в них одновременно должна проявляться тонкая структура спектра колебательная и вращательная. Однако колебательная структура электронного спектра наблюдается только в газовой фазе и редко в растворах (рис. 74). Это же можно сказать о вращательной структуре колебательного спектра. [c.611]

    Поскольку колебательные переходы происходят при более высоких энергиях, чем вращательные, с первыми связана значительно большая энергия, чем со вторыми. Это означает, что колебательный переход, скорее всего, должен сопровождаться вращательными переходами. Данное обстоятельство оказывает большое влияние на вид спектра и обнаруживается в спектрах, полученных в газовой фазе при низких давлениях, как вращательная тонкая структура, накладывающаяся на колебательный спектр. В жидкой фазе вращательные уровни возмущаются молекулярными взаимодействиями и столкновениями, поэтому вместо обнаруживаемой в газовой фазе тонкой структуры в жидкой фазе наблюдается только уширение колебательных полос. Нередко форма уширенной полосы подобна огибающей вра- [c.347]

    Электронные переходы в молекулах сопровождаются одновременным изменением колебательной и вращательной энергии, вследствие чего каждый электронный переход в молекуле дает ряд полос, состоящих из большого числа близко расположенных линий, обусловленных изменением колебательной и вращательной энергии молекулы. Изменения колебательной энергии молекулы определяют место отдельных полос в системе. Изменения вращательной энергии молекулы определяют тонкую структуру отдельных полос. Полосатые спектры в близкой ИК-области обусловлены только изменением колебательной и вращательной энергии молекул, а спектры в далекой ИК-области вызваны изменениями только вращательной энергии. [c.16]

    Поглощение излучения в видимой или ультрафиолетовой областях приводит к изменению электронной энергии молекулы, которое всегда сопровождается также изменением вращательной и колебательной энергии. Поэтому полный электронный спектр состоит из ряда систем полос. Каждая система (см. приложение, рис. 20) соответствует определенному изменению электронной энергии и включает много полос, каждая из которых относится к определенному колебательному переходу и еще может иметь вращательную тонкую структуру. Большинство переходов в инфракрасной области, обладающих наибольшей интенсивностью, обусловлены изменением колебательного квантового числа (обычно от какого-либо его небольшого значения), как правило, на одну или две единицы. Однако в электронных спектрах, хотя большинство молекул находилось первоначально в низших колебательных состояниях, колебательное квантовое число может меняться на несколько единиц. Дело в том, что электронный переход осуществляется гораздо быстрее, чем молекулярное колебание. Поэтому межъядерное расстояние [c.334]

    Наложение колебательных и вращательных переходов на электронные создает тонкую структуру полосы электронного спектра. [c.7]

    Электронные переходы обычно сопровождаются изменением колебательного и вращательного состояний. Два таких перехода изображены стрелками а и б на рис. 5-4. В колебательном спектре появляются также переходы на различные вращательные уровни. Вследствие этого у электронных переходов часто наблюдается колебательная тонкая структура, а у колебательных переходов иногда можно обнаружить вращательную тонкую структуру. [c.144]

    При конденсации газа в жидкость в спектре происходят существенные изменения. Вращение молекул в конденсированной фазе затруднено, поэтому в колебательном спектре тонкая структура исчезает. Внутримолекулярные колебания в конденсированном состоянии с сильно разупорядоченным окружением приводят к появлению в спектре относительно широких полос, являющихся результатом межмолекулярных взаимодействий. Это разупорядочение также вызывает заторможенное молекулярное вращение, которое отлично для молекул в жидкой фазе. Поэтому в низкочастотной области спектра следует ожидать широкого бесструктурного континуума, за исключением тех случаев, когда образуются относительно стабильные молекулярные образования. Например, Уолрэфен [43] наблюдал широкие полосы с максимумами при 60, 160 и 600 см в спектре КР жидкой воды. Однако в спектрах некоторых молекул и в жидком состоянии сохраняются элементы вращательной структуры в виде неразрешенных вращательных крыльев у основных полос. Этот эффект хорошо иллюстрируется спектром КР жидкого метана [23]. [c.362]

    Колебательно-Еращательные спектры. Для получения этих спектров требуется техника, позволяющая обеспечить высокое разрешение в инфракрасной области. До последнего времени к-огда для регистрации инфракрасного излучения начали применять фотосопротивления (сульфид, селенид и теллур ид свинца),, наилучшее разрешение достигалось при регистрации фотографическим способом, а не с помощью термопар. Поэтому для исследования вращательной тонкой структуры- колебательной полосы было желательно использовать полосы, находящиеся в так называемой фотографической области инфракрасного спектра. Трудность состояла в том, что интенсивные линии инфракрасного спектра лежат в области с большими длинами волн, а фотографическая область содержит сравнительно слабые обертоны и комбинационные полосы. В течение последних лет Герцберг с сотрудниками и другие исследователи сумели преодолеть указанное затруднение, используя многократное отражение луча и увеличивая таким образом путь, на котором происходит поглощение. Вращательная тонкая структура колебательной полосы зависит от симметрии молекулы и от изменения колебательного состояния,, которому отвечает эта полоса. В частности, для линейных молекул имеется набор колебательных переходов 2—2, П—И, П—П и т. д. Полосы Е—Е имеют простые ветви Р и Я (соответствующие-изменению вращательного квантового числа J на —1 и +1) о одной недостающей вращательной линией между этими двумя линиями полосы П—И и П—П имеют, кроме того, и ветвь Q (соответствующую ЛУ=0), Для молекул с центром симметрии вращательные уровни при обмене одинаковых ядер оказываются поочередно симметричными или антисимметричными. Следствием этого является чередование интенсивностей вращательных ли- [c.14]

    Ценные экспериментальные данные получены для метилмеркургалогенидов и дейтеро метилмеркургалоге-нидов в работах [32, 69]. Авторам этих работ удалось получить колебательно-вращательные спектры газообразных СНзН Х и СОзН Х (Х=С1, Вг, I). Результаты анализа тонкой структуры перпендикулярных полос V5, V6 и V представлены в табл. 5. Особенно хорошо разрешенная тонкая структура была получена для полос маятниковых колебаний 7 группы СНз, и распределение линий в ( -ветви можно охарактеризовать следующими квадратичными зависимостями  [c.231]

    В результате исследования вращательной структуры полос могут быть получены данные о симметрии молекулы. Например, простая тонкая структура вращательно-колебательных полос ацетилена свидетельствует о том, что молекула ацетилена является линейной. Кроме того, в простых молекулах по расстояниям между вращательными ли1шями могут быть определены мпмс ггы инерции, а отсюда может быть получено и межатомное расстояние, если в молекуле, например метана, имеется только одно такое расстояние. Когда в молекуле имеются два различных межатомных расстояния, как в ацетилене, для определения межатомных расстояний необходимо исследовать спектр поглощения двух изотопических форм (в данном случае С2Н2 и СаНО). Это позволяет найти два значения момента инерции, на основании которых могут быть вычислены необходимые расстояния. [c.307]

    Получен спектр жидкого и твердого СН4 [275]. Вращательная структура полос, исс.педованная в работах [122, 146, 163, 190, 366, 370, 374, 379, 413, 424, 425, 530], тем сложнее, чем выше разрешающая способность примененного спектрального прибора (рис. 10). Сложность вращательной структуры вызывается кориолисовым взаимодействием колебательного и вращательного движения [7] и затрудняет точное определение молекулярных констант. Для параллельных полос симметричных волчков СНдВ и СНВд указанные эффекты отсутствуют и тонкая структура поддается точному анализу. Найден- [c.501]

    Полосы на спектрах, расположенные в диапазоне видимого и ультрафиолетового излучения, возникают в результате взаимодействия вращательных, колебательных и электронных переходов и имеют сложную структуру. На рис. А.23 и А.24 приведена упрощенная схема термов двухатомной молекулы. На рис. А.23 дана схема основного состояния с колебательными и вращательными уровнями энергии. Диссоциированная молекула, атомы которой могут принимать любое количество кинетической энергии, соответствует заштрихованным областям (рис. А.23 и А.24). Вращательные термы приведены в другом, значительно меньшем масштабе. На рис. А.24 показаны аналогичные термы электронных переходов возбужденной молекулы. Полоса электронных переходов состоит из ряда полос, соответствующих различным колебательным переходам, а те в свою очередь имеют тонкую структуру, связанную с вращением молекул. Энергию диссоциации молекулы можно определить, установив частоту, при которой полосатый спектр переходит в сплошной, однако при этом следует учитывать энергию возбуждения образовавшихся атомов. Положение колебательных уровней при электронных переходах в молекуле определяется принципом Франка — Кондона при электронных переходах расстоя- [c.66]

    Конечно, представление о постоянстве г слишком упрощено. Если бы движение молекулы подчинялось законам классической механики, то при большой скорости ее вращения вследствие центробежной силы расстояние между атомами должно было бы возрастать. Такой характер влияния вращения на колебания молекулы может быть описан с помощью, квантовой механики. При этом выражение для Е/ усложняется. При более строгом квантовомеханическом описании необходимо учитывать влияние на колебательную энергию движения электронов (тонкая структура вращательных термов). В случае многоатомных молекул выражение для энергии еще сложнее. Энергетические уровни остаются дискретными, и вращательный спектр молекулы находится в инфракрасной области. [c.144]

    Лагерквист, Нилссон и Вигарц [2531] также исследовали тонкую структуру девяти полос р-системы 3—1, 2—О, 2—2, 1—О, 1—4, О—О, О—1 О—2 и О— 3. Полосы наблюдались при возбуждении спектра в угольной дуге и регистрировались на приборе с дисперсией 1,3 А/мм. Точность измерений для большинства линий составляла + 0,05 см . В результате анализа были найдены вращательные и колебательные постоянные ВО в состоянии Те = 43174,05, со, =- 1281,69, ЫеХе = 10,66, Ве == 1,5171, а = 0,0210, Ве — 8,5-10- сж которые незначительно отличаются от постоянных, найденных в работе [289  [c.701]

    На рис. 5 приведен инфракрасный спектр иодистого метила в газе, жидкости и твердом состоянии, полученный Мадором и Куинном на призменном спектрометре [67]. Изменения в этих спектрах, наблюдаемые при переходе от газовой фазы к жидкой и твердой, являются весьма характерными. Тонкая вращательная структура, отчетливо проявляющаяся в спектре газовой фазы, в спектрах конденсированных фаз исчезает. В спектре жидкости, как правило, наблюдаются широкие невыразительные полосы, хотя вблизи точки плавления можно предугадать тонкую структуру, более характерную для твердой фазы. Так как межмолекуляр-ные силы, приводящие к взаимосвязи колебательных переходов, действуют на относительно небольших расстояниях, то это появление тонкой структуры в спектре жидкого состояния является несомненным доказательством ближнего порядка в жидкости, что согласуется с данными дифракционных методов. [c.598]

    На фпг. 11.4 представлена зависимость процента проходящего света от длины волны для абсорбционной кюветы длиной 6 см, наполненной окисью углерода нри давлении 1 атм. Результаты были получены со спектрографом с малой разрешающей силой, который не мог разрешить тонкую вращательную структуру. Поэтому в спектре видны только широкие контуры полос поглощения, причем значительное поглощение наблюдается для основно11 колебательно-вращательной полосы, а также для более слабого первого обертона. В случае очень большой оптической плотиости [c.223]


Смотреть страницы где упоминается термин Колебательно-вращательные спектр тонкая структура: [c.156]    [c.166]    [c.156]    [c.166]    [c.20]    [c.178]    [c.20]    [c.143]    [c.143]    [c.348]    [c.9]    [c.701]    [c.252]    [c.79]    [c.375]    [c.91]   
Теоретическая химия (1950) -- [ c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Вращательная тонкая структура

Спектр вращательный колебательно-вращательный

Спектры вращательные

Спектры колебательно-вращательные

Спектры колебательные

Тонкая структура

Тонкая структура колебательного спектра

Тонкая структура спектра

тонкой



© 2025 chem21.info Реклама на сайте