Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность адсорбента

    Эти процессы предназначены для производства базовых масел различного уровня вязкости, деароматизированных жидких и твердых парафинов и специальных углеводородных жидкостей. Они основаны на избирательном выделении полярных компонентов сырья (смолистых веществ, кислород- и серосодержащих углеводородов, остатков избирательных растворителей) на поверхности адсорбентов. Высокая адсорбируемость полярных компонентой сырья на активном высокопористом адсорбенте обусловлена ориентационным и индукционным взаимодействием полярных и поляризуемых компонентов сырья активными центрами поверхности адсорбента. В качестве адсорбентов при очистке и доочистке масел применяют природные глины (опоки или отбеливающие земли) и синтетические (силикагель, алюмогель и алюмосиликаты). Активность природных глин повышают обработкой их слабой серной кислотой или термической обработкой при 350—450 °С. Синтетические адсорбенты активнее, но значительно дороже природных. [c.273]


    Жидкая или газовая смесь пропускается через слой адсорбента, обычно сверху вниз. Цикл адсорбции заканчивается после почти полного использования поглотительной способности адсорбента, на что указывает проскок адсорбируемого вещества. Затем через адсорбент пропускают вытесняющий агент (растворитель, водяной пар и т. д.), который вытесняет адсорбированное вещество с поверхности адсорбента. Иногда этого бывает недостаточно. Например, при адсорбционной очистке масел, парафина часть смолистых ве(цеств остается па поверхности адсорбента после вытеснения. Тогда адсорбент требует дополнительной регенерации путем выжига смолистых отложений, для чего его необходимо выгружать и регенерировать в отдельном аппарате. [c.258]

    Кривая, выражающая зависимость между равновесной концентрацией веи е-ства в объеме и количеством его на поверхности адсорбента при постоянной температуре, называется изотермой адсорбции. Уравнение (290) является уравнением изотермы адсорбции. Типичные изотермы адсорбции приведены на рис. 132. [c.257]

    В качестве адсорбентов применяются твердые вещества, имеющие большую удельную поверхность, отнесенную обычно к единице массы вещества. Удельная поверхность адсорбентов колеблется от сотен до десятков сотен квадратных метров на грамм в зависимости от вида и сорта адсорбента. В технике широко применяются адсорбенты с удельной поверхностью 600—800 м2/г. [c.88]

    Свойство различных адсорбентов преимущественно адсорбировать некоторые компоненты называется избирательностью или селективностью адсорбента и позволяет разделять на поверхности адсорбента различные газообразные и жидкие смеси. [c.257]

    Если в слой адсорбента постепенно вводить разделяемую смесь, то вначале будут поглощаться все компоненты смеси до полного насыщения адсорбента. Ввод дополнительного количества смеси приведет к вытеснению с поверхности адсорбента молекул с меньшей степенью адсорбируемости молекулами с большей степенью адсорбируемости. [c.257]

    Адсорбция представляет собой процесс обратимый, поскольку наряду с ней идет также противоположный процесс десорбции, т. е. переход адсорбированных ионов или молекул с поверхности -адсорбента в раствор. Одновременное течение этих двух взаимно противоположных процессов приводит, как и всегда, к состоянию динамического равновесия, называемого адсорбционным равновесием. [c.111]

    Особенностью адсорбционных взаимодействий является то, что адсорбирующаяся молекула взаимодействует не с одним центром на поверхности адсорбента (ионом, атомом или молекулой, образующими его решетку), но со многими соседними центрами. При этом суммарное взаимодействие молекулы адсорбата со всем адсорбентом, обусловленное дисперсионными силами, всегда больше взаимодействия ее с одним центром адсорбента, а суммарное электростатическое взаимодействие может быть и меньше электростатического взаимодействия с одним центром адсорбента (если, например, диполь молекулы адсорбата, притягиваемый катионом решетки, испытывает отталкивание со стороны соседних с этим катионом анионов, образующих вместе с катионами знакопеременную поверхность адсорбента). [c.438]


    Влияние величины поверхности адсорбента. Поскольку вещества или ионы адсорбируются на поверхности адсорбента, количество адсорбированного данным адсорбентом вещества прямо пропорционально величине общей поверхности его. Отсюда следует, что с явлением адсорбции при анализе больше всего приходится считаться тогда, когда имеют дело с аморфными осадками, так как частицы их образуются, в результате сцепления между собой большого количества небольших первичных частиц и поэтому имеют огромную общую поверхность. [c.111]

    Анализируя обе рассмотренные модели адсорбции, необходимо заметить, что для каждой изотермы а р) можно привести определенную функцию распределения теплоты адсорбции, однако они не могут быть обоснованы теорией твердого тела. Недостаточно ясен также физический смысл функции Д (а). Поэтому особенно важно найти точные экспериментальные методы исследования взаимодействия молекул в хемосорбционном слое и состояния поверхности адсорбентов. Существенное значение в связи с этим имеют изотопные методы, позволяющие отличить энергетическую неоднородность поверхности и взаимодействие хемосорбированных молекул. [c.278]

    Депарафинизированный бензин собирали в приемник и ловушку, охлаждаемые жидким азотом. После окончания процесса адсорбции депарафинизированный бензин, находящийся на поверхности адсорбента, удалялся при 120° в токе азота. Схема установки дана на рисунке. Десорбцию н-алканов проводили при 340—350°С и давлении 5 мм рт. ст. с помощью азота. Образование кокса не имело места. [c.193]

    В отличие от хемосорбции физическая адсорбция основана главным образом на вандерваальсовом взаимодействии между поверхностью твердого вещества и ее окружением. Поэтому теплота адсорбции нередко составляет не более 40 кДж на моль адсорбированного вещества и вследствие этого адсорбированный слой легко отделяется от поверхности. Удаление молекул адсорбированного вещества с поверхности адсорбента называется десорбцией. Для осуществления процесса десорбции [c.87]

    В отличне от измеряемой на опыте величины а, зависящей ог удельной поверхности адсорбента, величины концентраций Сд и а определяются лишь химической природой компонентов системы адсорбент+адсорбат (для данных р и Т), т. е. являются величинами абсолютными. Эти абсолютные величины адсорбции для непористых или крупнопористых адсорбентов с поверхностью определенного состава являются физико-химическими константами. [c.441]

    Реакция окисления НгЗ в серу может осуществляться как в жидкой фазе, так и на поверхности адсорбентов и катализаторов.  [c.192]

    Адсорбат оказывает заметное влияние на поверхность адсорбента неоднородность и дефекты поверхности обратимо перераспределяются, в частности под влиянием адсорбированных молекул изменяется энергия центров адсорбции. С другой стороны, под воздействием адсорбента меняются энтропия и внутренняя энергия адсорбированных молекул. Известно также, что несколько первых слоев кристаллической поверхности твердого тела имеют искаженную структуру. В присутствии адсорбата степень нарушения структуры поверхностного слоя меняется, причем этот процесс не обязательно сопровождается массовым переносом атомов твердого тела. [c.183]

    Равновесие вещества в газовой фазе и в адсорбционном слое на поверхности адсорбента подобно равновесию газа в поле тяжести, только роль гравитационного поля играет поле адсорбционных сил, очень быстро убывающих с расстоянием от поверхности адсорбента. При адсорбции газов образуется мономолекуляр-ный адсорбционный слой толщина слоя определяется размерами молекул адсорбата и их ориентацией у поверхности. [c.439]

    Процесс физической адсорбции обратим, причем равновесие устанавливается очень быстро. Что касается хемосорбции, то она может быть как медленной, так и быстрой. Связь между хемосорбированной молекулой и поверхностью металла обычно настолько прочна, что такая молекула с трудом удаляется с поверхности адсорбента, причем десорбция может сопровождаться химическими процессами. [c.183]

    Помимо величины адсорбции и силы связи между молекулами адсорбата и адсорбента определенное влияние на эффективность противоизносного действия присадок оказывают также характер ориентации молекул в адсорбированном слое и плотность упаковки последнего. Считается, что молекулы ПАВ могут ориентироваться в граничном слое не только перпендикулярно, но и параллельно поверхности адсорбента. К числу таких ПАВ относятся и мно- [c.257]

    Наблюдаемые отклонения от изотермы Лангмюра можно объяснить как неоднородностью поверхности, так и взаимодействием молекул, вызывающим уменьшение теплоты адсорбции с увеличением степени заполнения поверхности адсорбента. [c.278]

    Когда адсорбент приводится в соприкосновение с некоторыми смесями, его поверхность оказывает избирательное действие, в результате чего в слое молекул, прилегающем к поверхности адсорбента, повышается концентрация определенных компонентов смеси. При этом даже ничтожные различия в структуре молекул могут оказывать большое влияние на адсорбционное сродство. Адсорбционное сродство углеводородов возрастает в следующей последовательности предельные углеводороды, олефины, диолефины, моноциклические ароматические углеводороды, полициклические ароматические углеводороды. [c.136]


    Пример еще нерешенной задачи представляет адсорбция с противотоком, когда жидкость и адсорбент непрерывно поступают в колонну с противоположных концов ее. По аналогии с другими процессами в этом случае может оказаться возможным использование понятия о высотном эквиваленте теоретической тарелки 4 . Однако такой прием основан на представлении о решающей роли диффузии в тонком слое жидкости на поверхности адсорбента [26] и требует допущения, что в массе обеих фаз смешение происходит настолько быстро, что концентрации в каждой из них можно считать постоянными. Следует отметить, что в порах адсорбента внутрипоровая жидкость не перемешивается, так что в пределах одной частицы концентрация адсорбента различна. [c.156]

    Энергия адсорбции неполярных молекул на поверхности ионных решеток. Если адсорбент построен не из атомов, а из ионов, то к рассмотренным дисперсионным силам притяжения добавляются индукционные силы притяжения диполя, индуцированного в молекуле адсорбата электростатическим полем, создаваемым ионами решетки адсорбента. Доля индукционных сил в величине потенциальной энергии адсорбции пропорциональна поляризуемости молекулы адсорбата 2 и квадрату напряженности электростатического поля над поверхностью адсорбента  [c.493]

    Индивидуальное свойство адсорбента, которое отличает его от других твердых веществ, — это его сильно развитая поверхность. Эта площадь обуславливается наличием многочисленных мельчайших нор, которые пронизывают отдельные частицы, а не мелкозернистостью (величиной) самих частиц, которая для всех промышленных адсорбентов мало влияет на площадь поверхности. Площадь поверхности адсорбента не зависит от химического состава, но зато она зависит от метода приготовления или природы продукта эти факторы могут значительно влиять на промышленные образцы одного и того же адсорбента. [c.263]

    Для определения удельной поверхности з обычно применяются изотермы адсорбции паров простых веществ (N2, Аг, Кг) при низких температурах (большие значения величины С). При этом за стандарт принята величина для азота, адсорбированного при —195 °С (78 °К) на графитированной саже, равная 16,2 А . Определив с помощью низкотемпературной адсорбции стандартного пара удельную поверхность адсорбента з, легко далее решить и обратную задачу—найти величину (и для какого-либо другого адсорбата, определив на опыте изотерму адсорбции его пара и найдя величину емкости монослоя а из графика, аналогичного показанному на рис. XVI, 9. [c.454]

    При адсорбции часто происходит образование водородной связи между молекулой адсорбата и соответствующими группами или ионами на поверхности адсорбента. Так, при адсорбции молекул воды, спиртов, эфиров, аминов и т. п. на адсорбентах, поверхность которых покрыта гидроксильными группами, например на силикагеле (высокополимерной кремнекислоте), в дополнение к неспецифическим дисперсионным, ориентационным и индукционным взаимодействиям происходит образование молекулярных комплексов с водородной связью. Такие более специфические взаимодействия проявляются также при адсорбции и других молекул с периферическим сосредоточением электронной плотности, например имеющих л-электронные связи, на поверхностях, [c.438]

    Количество адсорбата а, приходящееся на единицу поверхности адсорбента (поверхностная концентрация), составляет  [c.440]

    В том случае, когда происходит адсорбция газов из их смеси, например при адсорбции компонентов бинарной газовой смеси, имеются как бы две параллельные реакции взаимодействия газов А и В со свободной поверхностью адсорбента по схеме Лэнгмюра (предполагается, что молекулы А и В адсорбируются на одних и тех же свободных местах поверхности)  [c.448]

    Если адсорбент предварительно адсорбировал некоторое количество пара этой жидкости (Га на единицу его поверхности), то теплота смачивания соответственно уменьшается. После предварительного полного насыщения гладкой поверхности адсорбента паром смачивающей жидкости на поверхности адсорбента образуется жидкая пленка. При смачивании такого адсорбента жидкостью исчезает поверхность раздела жидкая пленка—пар, поэтому теплота смачивания единицы гладкой поверхности адсорбента но мере роста предварительно адсорбированного ею количества пара надает до величины полной поверхностной эиергии жидкости [c.486]

    В этом выражении все константы известны, поэтому его можно применить для вычисления потенциальной кривой Ф=/(г), т. е. зависимости потенциальной энергии адсорбции от расстояния центра молекулы адсорбата от поверхности адсорбента. [c.491]

    Когда такой процесс разделения ведется в колонке, заполненной адсорбентом, в один конец которой непрерывно вводится разделяемая смесь, процесс адсорбции идет послойно, т. е. по ходу движения смеси будут располагаться компоненты с все более низкой адсорбируемостью. Из колонки будет выходить поток, содержащий только менее адсорбируемые компоненты, до тех нор, пока пся поверхность адсорбента не занолпится компопентом, имеющим более высокую степень адсорбируемости. Если после этого продолжить пропускание разделяемой смеси, произойдет проскок адсорбируемого компонента, т. о. он появится в потоке, выходяп ем из колонки. [c.258]

    Когда сорбированный слой очень слабо связан (доказательством чего может служить диапазон давлений и температур, при которых достигается сорбционное равновесие), процесс называется физической адсорбцией . Она характеризуется быстрым и обратимым равновесием с газовой фазой. Измеряемая теплота адсорбции по порядку величины оказывается равной теплоте сжижения адсорбируемого вещества. Интервал температур, в котором осуществляется такая адсорбция, лежит значительно ниже критической температуры адсорбированного вещества. В общем случае этот интервал является довольно большим вблизи точки кипения адсорбированного вещества. Силы, за счет которых происходит физическая адсорбция, ио-видимому, те же самые, что и при сжижении или смешении двух жидкостей, и должны быть отнесены к типу ван-дер-ваальсовых сил. Адсорбируемое вещества может образовывать многомолекулярные слои на поверхности адсорбента при давлениях, достаточно близких к давлению пара адсорбируемого вещества при температуре эксперимента. При давлении, равном давлению насыщающих паров, твердая поверхность просто смачивается жидкостью. [c.536]

    В процессах адсорбции также важны стерические факторы — геометрия поверхности адсорбента и адсорбированной молекулы, однако при адсорбции размер молекул играет бэльшую роль, чем их форма. [c.76]

    Особенностью адсорбционных взаимодействий, отличающе их от взаимодействия между молекулами в газах, является весьма тесное сближение молекул адсорбата с атомами, ионами или молекулами, образующими поверхность адсорбента. Вследствие этого взаимодействие между частицами адсорбата и адсорбента аналогично взаимодействиям в конденсированных средах, например в растворах, где расстояния между частицами также весьма малы. Поэтому явление адсорбции часто имеет много общего с молекулярной ассоциацией в жидкостях. [c.438]

    Наконец, между молекулой адсорбата и молекулами, атомами или ионами поверхности адсорбента может возникнуть настоящая химическа- реакция с образованием нового поверхностного химического соединения. В этом случае говорят о хемосорбции. Примером хемосорбцил является адсорбция кислорода поверхностями металлов. Хемосорбция с поверхности может распространиться и на объем адсорбента, переходя в обычную гетерогенную реакцию. [c.439]

    Если поверхность адсорбента однородна, то концентрация вещества в адсорбционном слое па поверхности адсорбента везде одинакова. Если она равна (и выражается, например, числом молей в единице объема адсорбционного слоя) и коэ4х зициент активности в адсорбционном слое равен а концентрация в газе в (моли в единице объема) и коэффициент активности в газе 7, то из общего закона распределения (стр. 216) следует [c.439]

    Отклонения от этого простейшего уравнения изотермы адсорбции,означающие, что коэ1 )фициент активности не равен единице, обусловлены в случае однородной поверхности адсорбента (как и соответствующие отклонения от уравнения Генри при распределении вещества между объемными фазами) силами взаимодействия между молекулами адсорбата в адсорбционном слое. Обычно это силы 2,0 притяжения при при-ближени к плотному заполнению поверхности они переходят в силы оттал-кнвания. [c.442]

    Число мест на поверхности, на которых могут разместиться молекулы адсорбата, ограничено. Иными словами, концентрация Са В мономолекулярном слое может быть повышена лишь до некоторого предельного значения при котором все места, пригодные для адсорбции данного вещества, уже заняты. Влияние этого фактора на вид изотермы адсорбции проще всего рассмотреть, предполагая, что молекулы адсорбируются только на свободных местах поверхности адсорбента, с которыми они образуют адсорбционный комплекс. Связь с адсорбентом может быть при этом химической или физической, но достаточно сильной для того, чтобы молекула не перемещалась вдоль поверхности. В этой случае наблюдается локализованная адсорбция в отличие от нело-кализованной, когда молекулы адсорбата могут свободно перемещаться вдоль поверхности адсорбента. Так как поверхность адсорбента состоит из атомов, ионов или молекул, то для перемещения молекулы вдоль поверхности необходимо преодолевать потенциальные барьеры (см. схему на рис. XVI, 3). Поэтому при низ-ких температурах физически адсорбирующиеся молекулы преимущественно локализованы, а при высоких—не локализованы. Химически адсорбирующиеся молекулы локализованы. [c.443]

    Эти формулы выражают уравнение изотермы адсорбции Лэнгмюра. В соответствии с допущениями, сделанными при его выводе, это—уравнение локализованной адсорбции на однородной поверхности в отсутствие сил притяжения между молекулами адсорбата. Силы отталкмвання учитываются тем, что одно место на поверхности адсорбента может быть занято только одной молекулой адсорбата, т. е. они принимаются не зависящими от значения О и действующими лишь при непосредственном соприкосновении адсорбированных молекул друг с другом. [c.445]

    Величину а , т. е. количество адсорбата моль1г адсорбента), покрывающее поверхность адсорбента плотным монослоем, называют емкостью монослоя. Эта величина позволяет определить удельную поверхность s адсорбента, если известна площадь занимаемая молекулой адсорбата в плотном монослое  [c.446]


Смотреть страницы где упоминается термин Поверхность адсорбента: [c.257]    [c.260]    [c.215]    [c.256]    [c.443]    [c.446]    [c.450]    [c.454]    [c.480]    [c.493]    [c.494]   
Смотреть главы в:

Адсорбция газов и паров Том 1 -> Поверхность адсорбента

Адсорбция газов и паров Том 1 -> Поверхность адсорбента

Адсорбция газов и паров -> Поверхность адсорбента

Адсорбция газов и паров -> Поверхность адсорбента


Курс коллоидной химии (1976) -- [ c.99 , c.135 ]

Адсорбция, удельная поверхность, пористость (1970) -- [ c.0 ]

Адсорбция газов и паров Том 1 (1948) -- [ c.0 ]

Адсорбция газов и паров (1948) -- [ c.0 ]

Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбент носитель, адсорбционное модифицирование поверхност

Адсорбент очистка поверхности

Адсорбент поверхность активная

Адсорбент поверхность поверхность адсорбента

Адсорбент поверхность удельная

Адсорбент с близкой к однородной поверхностью получение

Адсорбент с нанесенными на поверхность

Адсорбент удаление воды с поверхности

Адсорбент удельная площадь поверхности

Адсорбент химическое модифицирование поверхности

Адсорбенты и катализаторы поверхность

Адсорбенты на основе силикагелей с соединениями переходных металлов на поверхности

Адсорбенты определение поверхност

Адсорбенты площадь поверхности

Адсорбенты поверхность единицы объема гранул

Адсорбенты природа поверхности

Адсорбенты с модифицированной поверхностью

Адсорбенты с нанесенными на поверхность модифицирующими слоями

Адсорбенты удельная поверхность пористые и непористые

Адсорбенты упорядоченное строение поверхности

Адсорбционное модифицирование поверхности адсорбентов

Адсорбционные методы исследования удельной поверхности и структуры адсорбентов и катализаторов,— А. В. Киселев

Адсорбция полимеров на поверхности дисперсных адсорбентов

Адсорбция электролитов из растворов на поверхности твердых адсорбентов

Взаимное вытеснение молекул компонентов раствора с поверхности адсорбента

Влияние величины поверхности адсорбента и температуры колонны на удерживаемый объем

Влияние величины поверхности и структуры пор адсорбента

Влияние на адсорбцию из растворов химической природы поверхности, размеров пор адсорбента и свойств раствора

Влияние на адсорбцию из растворов. химии поверхности адсорбента и межмолекулярных взаимодействий компонентов раствора с адсорбентом и друг с другом

Влияние на адсорбцию полимеров химии поверхности адсорбента и природы растворителя

Влияние на изотерму гиббсовской адсорбции из бинарных растворов химии поверхности адсорбента и природы компонентов раствора

Влияние природы поверхности адсорбента н размера молекул адсорбата на форму изотерм адсорбции

Влияние различных факторов на молекулярную адсорбцию растворенного вещества на поверхности твердого адсорбента

Влияние химии поверхности адсорбентов и строения молекул разделяемых веществ

Влияние химии поверхности адсорбентов на удерживаемые объемы Неспецифические и специфические молекулярные взаимодействия

Влияние химии поверхности и пористости адсорбента и природы растворителя на адсорбцию и хроматографию полимеров

Вольфкович Ю. М Общая дискуссия по вопросам пористой структуры и поверхности адсорбентов

Выбор стандартных состояний для поверхности адсорбента п объемного газообразного адсорбата

Газо-хроматографическое определение удельной поверхности адсорбента методом тепловой десорбции азота

Газо-хроматографическое определение удельной поверхности адсорбента по объему удерживания

Жданов С. П О роли химической природы поверхности адсорбентов

Значение адсорбентов с близкой к однородной поверхностью для развития молекулярной теории адсорбции и практических применений

Изменение поверхности адсорбента активация

Изменение поверхности адсорбента активация спекание, поверхность адсорбента

Изменение химической природы поверхности адсорбентов (модифицирование адсорбентов)

Измерение удельной поверхности адсорбента

Использование г-метода для определения объема микропор и поверхности переходных пор углеродных адсорбентов по адсорбции из водных растворов

Качественная характеристика межмолекулярных взаимодействий в хроматографии. Углеродный адсорбент с однородной поверхностью

Классификация адсорбентов по химической природе поверхности

Метод определения доли сегментов, ввязанных о поверхностью адсорбента

Методы определения удельной поверхности адсорбентов из изотерм адсорбции паров

Методы определения удельной поверхности и параметров пористой структуры углеродных адсорбентов по адсорбции органических веществ из водных растворов

Модифицирование поверхности адсорбента химическими реакциями

Молекулярная адсорбция растворенного вещества на поверхности твердого ------адсорбента

Молекулярно-статистические выражения константы Генри для адсорбции газа на инертном адсорбенте с однородной поверхностью Потенциальная энергия межмолекулярного взаимодействия адсорбат— адсорбент

Неймарк И. Е Химия поверхности адсорбентов и метод полярографии

Непористые и пористые углеродные адсорбенты. Удельная поверхность и объем пор

О газо-хроматографическом испытании адсорбентов и катализаторов. Сообщение I. Определение относительных поверхностей адсорбентов. Ф. Вольф и Байер (пер. и ред. М. И. Яновский)

Определение поверхности адсорбента

Определение удельной поверхности адсорбента

Определение удельной поверхности адсорбента методом адсорбции из растворов

Определение удельной поверхности адсорбентов методом газовой хроматографии

Определение удельной поверхности микропористых адсорбентов

Поверхность адсорбента адсорбция на гладких

Поверхность адсорбента активные линии

Поверхность адсорбента активные участки

Поверхность адсорбента величина

Поверхность адсорбента влияние адсорбированного вещества

Поверхность адсорбента влияние на теплоту адсорбции

Поверхность адсорбента влияние полировки

Поверхность адсорбента влияние попеременного

Поверхность адсорбента влияние прокаливания

Поверхность адсорбента влияние холодной прокатки

Поверхность адсорбента внешняя

Поверхность адсорбента внутренняя

Поверхность адсорбента гидроксилирование и дегидроксилирование

Поверхность адсорбента деформация решетки

Поверхность адсорбента идеальная

Поверхность адсорбента изменение спекание, активация

Поверхность адсорбента кислотность

Поверхность адсорбента модифицирование

Поверхность адсорбента наружная

Поверхность адсорбента неоднородная

Поверхность адсорбента неоднородная часть

Поверхность адсорбента однородная

Поверхность адсорбента однородная часть

Поверхность адсорбента окисления и восстановления

Поверхность адсорбента поверхностях

Поверхность адсорбента поверхностях

Поверхность адсорбента различные геометрические конфигурации

Поверхность адсорбента реальная

Поверхность адсорбента состав

Поверхность адсорбента спекание спекание

Поверхность адсорбента структура

Поверхность адсорбента также удельная поверхность

Поверхность адсорбента точечные

Поверхность адсорбента трещины

Поверхность адсорбента удельная, влияние на удерживание

Поверхность адсорбента упаковка молекул

Поверхность адсорбента химическая природа

Поверхность адсорбента шероховатость

Поверхность адсорбента электрический потенциал

Пористая структура и поверхность адсорбентов V Научные основы управления пористой структурой и адсорбционными свойствами кремнеземных адсорбентов

Природа поверхности и пористости адсорбентов

Простейший неспецифический адсорбент с одноатомной однородной поверхностью — графитированная термическая сажа

Проявление межмолекулярных взаимодействий адсорбат—адсорбат на однородной поверхности неспецифического адсорбента при адсорбции молекул разной природы

Пути улучшения однородности поверхности некоторых адсорбентов

Р а б о т а 89. Вытеснение с поверхности адсорбента одного вещества другим

Расчет термодинамических величин из хроматограмм при низких заполнениях поверхности. Связь этих величин с химией поверхности адсорбента и структурой молекул

Роль создания и изучения адсорбентов с близкой к однородной поверхностью в развитии молекулярной теории адсорбции

Роль химической природы поверхности адсорбента

СТРУКТУРА И ПРИРОДА ПОВЕРХНОСТИ АДСОРБЕНТОВ М М Дубинин Адсорбция в микропорах

Связь удерживания с химическим строением поверхности адсорбента и молекул разделяемых веществ

Селективность поверхности адсорбента, удельной

Селективность химии поверхности адсорбента

Специфические взаимодействия неполярных молекул, обладающих большими квадрупольными моментами и л-электронкыми связями, с гидроксильными группами и ионами поверхности адсорбента

Специфические взаимодействия неполярных молекул, обладающих большими квадрупольными моментами и я-электронными связями, с гидроксильными группами и ионами поверхности адсорбента

Структура гладкой поверхности адсорбента

Структура поверхности и свойства полярных адсорбентов

Схема онределения удельной поверхности адсорбента

Теплоемкость заполнения поверхности адсорбента

Теплота адсорбции колебания на поверхности адсорбента

Удельная поверхность адсорбентов абсолютный метод

Удельная поверхность адсорбентов из заполнения мономолекулярного слоя

Удельная поверхность адсорбентов относительный метод Гаркинса и Юра

Удельная поверхность адсорбентов по адсорбции из растворов

Удельная поверхность адсорбентов по исследованию адсорбционных пленок

Удельная поверхность адсорбентов по методу Брунауера, Эммета и Теллера

Удельная поверхность адсорбентов по методу Грегга

Удельная поверхность адсорбентов по методу Дерягина

Удерживание на плоской поверхности неспецифического адсорбента

Удерживания с химией поверхности адсорбента

Химическая природа поверхности углеродных адсорбентов и ее значение для молекулярной адсорбции органических веществ из водных растворов

Цели и возможности адсорбционного модифицирования поверхности адсорбента

Щербакова. Химическое модифицирование поверхностей адсорбентов



© 2025 chem21.info Реклама на сайте