Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность адсорбента также удельная поверхность

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    В настоящее время применяются разнообразные неорганические адсорбенты как немодифицированные, так и с химически или адсорбционно модифицированной органическими веществами по-верхностью, а также чисто органические адсорбенты — пористые полимеры. Геометрическую структуру адсорбентов можно изменять в очень широких пределах —от непористых адсорбентов с удельной поверхностью s порядка 1—10 и макропористых с s порядка 10—100 м /г и размерами пор d>100 нм, до микропористых с S 1000 м /г и d< 10 нм. [c.14]

    Адсорбируемость веществ зависит от их природы, строения молекул, а также от природы и структуры адсорбента (величины удельной поверхности, размеров пор). Адсорбируемость углеводородов обычно возрастает с увеличением их молекулярной массы, однако значительное влияние на нее оказывают структура и размеры молекул. Так, парафиновые и нафтеновые углеводороды поглощаются в меньшей степени, чем ароматические. Сернистые соединения лучше сорбируются, чем содержащие их парафиновые и нафтеновые углеводороды. Непредельные низкомолекулярные углеводороды (этилен, пропилен) адсорбируются лучше, чем соответствующие их предельные аналоги (этан, пропан). [c.21]

    Таким образом, вопросы влияния на газо-адсорбционное разделение геометрической структуры адсорбентов—их удельной поверхности, связанного с ней влияния неоднородности поверхности,-а также формы пор и их распределения по размерам и по глубине зерна адсорбента имеют большое значение. [c.89]

    Сорбентами называют твердые тела или жидкости, способные поглощать (сорбировать) в большом количестве газообразные, парообразные и растворенные вещества. Из большого числа сорбентов в настоящем разделе приведены некоторые наиболее распространенные твердые сорбенты. Их называют также адсорбентам и—от слова адсорбция. Процесс адсорбции представляет собой сгущение, уплотнение растворенного или парообразного вещества на поверхности сорбента. Поглощающая способность твердых сорбентов обусловлена их пористой структурой,т. е. наличием огромного количества мельчайших пор (пустот) и соответственно огромной внутренней суммарной поверхностью этих пор (удельной поверхностью). В определенных условиях (нагревание, продувка) поглощенные вещества выделяются обратно из сорбентов (десорбция), после чего сорбенты обычно вновь бывают способны к сорбции. [c.289]

    ПО газовой хроматографии проведены на адсорбентах с неизвестной удельной поверхностью, и их нельзя использовать для расчета величин кг- Однако некоторые результаты, собранные в табл. 2а — 2г, могут оказаться полезными для характеристики различных поверхностей и для применения закона Генри при определении удельной поверхности. Можно надеяться, что со временем такая важная информация будет опубликована в справочной литературе. Она необходима также при изучении кинетики катализа. [c.57]


    ЦИИ. К ИМ относятся поглощение влаги гигроскопическими материалами, некоторые процессы крашения, очистка масел, смывание загрязнений моющими-средствами и т. д. На величину адсорбции влияют природа адсорбента и адсорбируемого вещества, его концентрация, а также удельная поверхность адсорбента. [c.51]

    В качестве адсорбентов на практике применяют древесный и костяной угли, силикагель, высокодисперсные металлы, полученные восстановлением их из оксидов. Активированный уголь получают путем соответствующей активации угля-сырца твердых древесных пород. Уголь-сырец подвергают термической обработке для увеличения удельной поверхности. Активирование производят в атмосфере водяного пара или двуокиси углерода при температуре 700—900° С. При этом уголь частично реагирует с СОг и водяным паром с образованием СО и На-Изменение структуры угля показано на рис. 184. Активированный уголь как адсорбент применяется в противогазах, а также для очистки воздуха на промышленных предприятиях, для осветления различных растворов и т. п. Высокая адсорбционная способность активированного угля объясняется, как это видно из рис. 184, сильно развитой поверхностью. Так, суммарная поверхность всех пор, заключающихся в 1 г такого угля, составляет от 300 до 1000 лг. Такая огромная площадь обусловливает возникновение большого молекулярного силового поля и, стало быть, избыток поверхностной энергии на границе уголь — газ. За счет свободной поверхностной энергии и происходит адсорбция газа, т. е. повышение его концентрации в поверхностном слое угля при одновременном понижении концентрации газа в окружающем пространстве. [c.436]

    Возможность разделения той или иной смеси методом адсорбции зависит от величины адсорбируемости компонентов, входящих в ее состав. Адсорбируемость веществ зависит от их природы, строения молекул, а также от природы и структуры адсорбента (величины удельной поверхности, размеров пор и т. п.). [c.257]

    Приведенные выражения показывают, как можно влиять на значение константы Генри, изменяя параметры колонны — ее длину и сечение (т. е. массу адсорбента т), а также геометрическую характеристику адсорбента — его удельную поверхность 5. Действительно [c.23]

    Наиболее широко применяются адсорбаты аргон, азот и для определения малых величин удельной поверхности — криптон. Значения 5 не являются, строго говоря, константами, поскольку они зависят также от адсорбента, на котором ведутся измерения. Однако для большинства технических измерений значения 8т для азота и аргона можно принять за постоянные, равные, соответственно, 0,162 и 0,154 нм . [c.372]

    В качестве минеральных адсорбентов применяют алюмосиликаты с удельной поверхностью 100—250 м ]г и диаметром пор не менее 30 А. В качестве адсорбентов для этой цели рекомендуются также активированные глиноземы и бокситы с большой удельной поверхностью. Минеральные адсорбенты, в количестве 3—5%, находятся в растворе во взвешенном состоянии, и выделяющиеся при термическом разложении металлоорганических соединений в свободном состоянии металлы (V, N1 и др.) адсорбируются в его порах. [c.247]

    Уравнения Гиббса, Генри, Ленгмюра и Шишковского по экспериментальным данным о поверхностном натяжении растворов позволяют рассчитать следующие величины и характеристики адсорбцию ПАВ на межфазной границе раствор — воздух и раствор — твердый адсорбент толщину адсорбционного слоя линейные размеры молекул ПАВ предельную адсорбцию поверхностного мономолекулярного слоя удельную поверхность твердого адсорбента, катализатора, а также исследовать свойства поверхностных пленок. [c.39]

    Газовая хроматография используется для решения таких физикохимических задач, как определение коэффициентов распределения л активности, термодинамических функций распределения и адсорбции. Этот метод применяется также для определения удельной поверхности адсорбентов, катализаторов, наполнителей. [c.46]

    Удельная поверхность любого пористого вешества (катализатора или адсорбента) определяет количество соединения, адсорбируемого единицей массы этого вещества, и играет главную роль в гетерогенном катализе, определяя величину адсорбции и т. д. Установление величины удельной поверхности позволяет также судить о количестве и протяженности активных центров, о величине активной поверхности, об образовании моно- или полислоя в результате адсорбции, о характере поверхностных реакций,—т. е. способствует пониманию сути гетерогенных каталитических реакций. [c.40]

    Изотермы адсорбции определяются опытным путем. Вид изотермы адсорбции зависит от многих факторов удельной поверхности адсорбента, объема пор, их распределения по размерам и других характеристик структуры адсорбента, свойств поглощаемого вещества, а также от температуры процесса. В качестве примера на рис. XIV- , а изображены виды типичных изотерм адсорбции для различных веществ, а на рис. XIV- , б— изотермы адсорбции окиси углерода на угле при различных температурах. [c.566]


    Разделительная способность как адсорбционной, так и распределительной хроматографической колонки в значительной степени зависит от развития удельной поверхности сорбента. Поэтому в распределительной хроматографии неподвижную жидкость наносят на твердые зерненые носители с большой удельной поверхностью. Однако следует учитывать, что наряду с растворением компонентов разделяемой смеси в этой жидкости может иметь место также и адсорбция на поверхности носителя при недостаточном покрытии жидкостью. Кроме того, возможны адсорбционные процессы на границах газ — жидкая пленка и жидкость — твердый носитель. Это особенно относится к хроматографии на модифицированном сорбенте. Этот метод является промежуточным между газо-жидкостной и газо-твердой хроматографией. Он основан на том, что твердый адсорбент, являющийся неподвижной фазой, покрыт (модифицирован) небольшим количеством жидкости. В этом случае разделение обусловлено как адсорбцией на поверхности раздела газ — твердое тело, так и абсорбцией в жидкости. [c.17]

    Хроматографический метод может быть использован также № для определения удельной поверхности адсорбентов. Для адсорбентов одной и той же химической природы удерживаемый объем, полученный с одним и тем же газом, пропорционален величине поверхности, т. е. [c.168]

    Изучая одним из статических методов количество поглощенного газа в зависимости от его равновесного давления при постоянной температуре, получают изотерму адсорбции. Выполняя эксперимент при постоянном давлении и при различной температуре, можно получить зависимость адсорбции от температуры и из этих данных рассчитать теплоту адсорбции. По характеру и взаимному расположению изотерм адсорбции, полученных для разных газов или паров, можно судить об избирательном действии выбранного адсорбента по отношению к тому или иному газу. Данные, получаемые из статических измерений, позволяют также рассчитывать пористость, удельную поверхность, коэффициент диффузии и другие характеристики адсорбента и адсорбата. [c.112]

    Таким образом, хроматографическим методом можно определить удельную поверхность адсорбента. Однако следует иметь в виду, что описанный метод может дать удовлетворительные результаты только при соблюдении указанных выше условий, а также при наличии острых симметричных проявительных хроматограмм. Поэтому метод может быть рекомендован только для непористых и достаточно широкопористых адсорбентов одинаковой химической природы. Метод был впервые предложен Кремер [15] и обоснован в работах [16—18]. [c.118]

    Для облегчения расчетов даны также решения типовых задач. Достаточно большой набор задач для самостоятельного решения позволяет давать студентам индивидуальные задания, причем некоторые задачи решаются комплексно (например, характеристика пористой структуры адсорбента и расчет удельной поверхности по Киселеву, расчет потенциальных кривых взаимодействия частиц и др.). [c.4]

    Определив удельную поверхность адсорбентов, можно определить площадь (т, занимаемую молекулой любого другого газа. Площадь а приблизительно определяют также по формуле  [c.203]

    Углерод в виде сажи, кокса, древесного угля, костных углей находит большое применение. Кокс используют в металлургии. Древесный уголь также применяют в металлургии, при изготовлении черного пороха и как адсорбент. Сухая перегонка животных остатков или костей дает животный или костяной уголь. Эти угли имеют очень большую поверхность, обладают хорошей способностью поглощать газы и растворенные вещества. Если животный или костяной угли предварительно обработать паром, то удельная поверхность их, а следовательно, и поглотительная способность значительно возрастает. Такие обработанные угли называют активированными. [c.241]

    Для каждой области температур кипения анализируемых веществ существует оптимальная пористость адсорбента для разделения низкокипящих, наиболее слабо сорбирующихся газов нужно использовать силикагели с высокой удельной поверхностью и средним диаметром пор не более 2 нм, для анализа углеводородных газов с температурой кипения не выше 10 °С — силикагели с диаметром пор 5-20 нм и для разделения более высококипящих углеводородов — соответственно более крупнопористые силикагели. Модифицирование неоднородных крупнопористых силикагелей гидроксидом калия, поташом или силикатом калия приводит к уменьшению асимметрии пиков и повышению селективности разделения углеводородов С2-С4. В качестве адсорбентов с полярной поверхностью, селективных по отношению к ал-кенам, используются также оксид алюминия и цеолиты. Полное разделение неуглеводородных компонентов газов проводят на цеолите в интервале температур 50-300 °С. [c.68]

    Таким образом, зависимость х/и —х) от х представляет собой прямую, по наклону которой и пересечению с осью ординат можно найти От И С. Далее с помощью уравнения (Х1У-9) величину Vm можно пересчитать на удельную поверхность исследуемого материала. Для. этого необходимо лишь знать о . Если адсорбция многослойная, разумно в качестве использовать не площадь центра адсорбции, а площадь поперечного сечения молекулы адсорбата, рассчитанную в зависимости от температуры из плотности жидкого или твердого адсорбата. Наиболее удовлетворительные результаты обычно получаются при следующих значениях а (А ) N2 16,2 О2 14,1 Аг 13,8 Кг 19,5 н-С4Нк) 18,1. Эти величины, а также значения о° для других адсорбатов критически обсуждаются в работе [38]. Отметим, что приведенные значения близки к рассчитанным из плотностей жидкостей при температурах их кипения и поэтому вполне пригодны для полимолекулярной адсорбции. Правда, иногда эффективная площадь поперечного сечения молекулы адсорбата может все же значительно отличаться от значения найденного из плотности жидкого адсорбата. Так, Пирс и Эвинг [39] показали, что адсорбция азота на поверхности графита определяется кристаллической структурой адсорбента, и поэтому эффективная площадь молекулы азота составляет 20 А , а не 16,2 А . [c.453]

    Для ряда процессов с участием пористых адсорбентов и катализаторов представляет интерес величина удельной поверхности 5, как функция-степени заполнения объема пор адсорбатом 7. Эта функция неоднозначна. Она зависит от способа насыщения пространства пор адсорбатом. В рамках решеточной модели полостей и горл можно установить связь между поверхностью адсорбента в процессе адсорбции 8 (х) и поверхностью адсорбента в процессе десорбции 8 (х). В поверхность частично насыщенного адсорбента дают вклад поверхность адсорбционных пленок и поверхность менисков обратимого капиллярного конденсата в незаполненных порах, а также поверхность менисков в местах пересечения заполненяых и незаполненных пор. [c.71]

    Эти очень чистые по своему химическому составу адсорбенты с удельной поверхностью от 2 до 500 м /г имеют форму правильных сферических частиц с узким распределением час-стиц по размерам, что обеспечивает высокую эффективность разделения. Среди других свойств следует отметить устойчивость к нагреванию до 600 °С, высокую механическую прочность, несмотря на значительную пористость, а также достаточную химическую инертность, например указанные адсорбенты в отличие от пористых органических полимеров не набухают в жидкостях. Адсорбционные свойства порасилов подробно изучены Фельтлем и др. [55]. Благодаря возможности выбора материалов с различной пористостью их область применения расширилась от собственно газового анализа до анализа органических соединений со средней полярностью. Перед использованием порасил так же, как и другие силикагели, необходимо активировать их можно также пропитывать жидкими неподвижными фазами. Согласно данным работы [52], гидротермальная обработка при 180°С и давлении водяного пара 1 МПа обеспечивает полное заполнение поверхности гидроксильными группами, что благоприятно влияет на элюирование высококипящих полярных соединений. [c.316]

    Непористые адсорбенты, получаемые реакциями осаждения кристаллических осадков, например сульфата бария или размолом кристаллических и стеклообразных твердых тел, обладают сравнительно небольшой удельной поверхностью. Величина удельной поверхности таких тел редко превышает Юж /г, чаще она составляет несколько десятых м г или около 1 м 1г. Более высокодисперсные непористые тела, служащие, например, хорошими наполнителями для резин, могут быть получены при неполном сгорании летучих органических соединений (черные сажи) или крем-нийорганических соединений (белые сажи), а также гидролизом галоидангидридов ортокремневой кислоты (51С14, 51р4) в сильно перегретом паре воды (аэросилы). Удельная поверхность таких тел с непористыми частицами достигает сотен м г. Такие адсорбенты находят широкое применение в качестве наполнителей полимеров, смазок, лаков и т. п. [c.483]

    Выбор грубой геометрической структуры адсорбента — величины удельной поверхности и пористости при заданном химическом составе поверхности зависит от характера разделяемой смеси. Время жизни молекул газов и легких углеводородов в адсорбированном состоянии при обычных температурах невелико, поэтому в колонке необходимо применить адсорбент с достаточно развитой поверхностью. Вместе с тем для газов (включая и легкие углеводороды) обычные и немного повышенные температуры достаточно велики для того, чтобы неоднородность поверхности аморфных адсорбентов с высокой удельной поверхностью и обмен в тонких порах не приводили к существенному размыванию пиков на хроматограммах. Для подобных разделений применяются цео-литы , тонкопористые силикагели, тонкопористые стекла, а также капиллярные стеклянные колонки с пористым слоем на стенках, получаемым разъеданием поверхности стекла растворами или осаждением на них силикагеля из силиказоля. Так, например, изотопы и изомеры водорода были успешно разделены на цеолитах в заполненной капиллярной колонке [1] и на стеклянной капиллярной колонке с пористым слоем на стенках [2]. [c.67]

    Адсорбционный процесс отбензинивания природных газов применяется лишь для переработки гаэов с низким содержанием высокомолекулярных компонентов. Этот процесс основывается на применении в качестве адсорбентов веществ с большой удельной поверхностью. Для этого можно использовать активные угли, получаемые обработкой древесины, торфа и т. д. хлористым цинком с последующим нагревом в слабо окислительной газовой среде. По расчету удельная поверхность высокоактивного угля достигает в среднем 1500 м г. Адсорбции способствует также капиллярная конденсация, влияние которой сказывается особенно сильно при адсорбции паров и газовых смесей. Для техниче-ското применения процесса важное значение имеет то обстоятельство, что активные угли, сильно адсорбируя углеводородные пары, практически не адсорбируют водяного пара. Поэтому на адсорбцию активными углями можно направлять влажный газ без предварительной его [c.30]

    Получив с помощью уравнения (116) изотерму адсорбции, можно ее обработать рассмотренными в главах XVI, XVII и XIX способами и получить, например, методом БЭТ (см. сгр. 454) емкость плотного монослоя и величину удельной поверхности адсорбента, а также получить изменение химического потенциала исследуемого вещества при адсорбции, откуда можно вычислить зависимость коэффициента активности адсорбата от заполнения иоверхности. Из серии хроматограмм, определенных при разных температурах, можно получить соответствующую серию изотерм адсорбции и определить нз них зависимость дифференциальной теплоты адсорбции от заполнения поверхности, дифференциальные энтропии и другие термодинамические характеристики адсорбции при разных заполнениях. Результаты таких газо-хроматографических исследований при благоприятных условиях опыта близки к результатам статических методов. [c.592]

    От порозности слоя адсорбента зависит гидравлическое сопротивление, возникающее при движении потока разделяемого продукта. Пористость частиц или гранул адсорбента в значительной мере влияет на его активность чем больще пористость, тем больше удельная поверхность частиц или гранул адсорбента (в м /г), тем при прочих равных условиях больше адсорбционная актив- ость адсорбента, характеризуемая количеством поглощенного вещества. Удельная поверхность адсорбента зарисит от природы адсорбента и составляет для пористых адсорбентов (силикагелей, алюмогелей) — около 1000 мУг для непористых мелкокристаллических адсорбентов — от 1 до 500 м /г. Адсорбционная активность щеолитов зависит от диаметра тор и размера адсорбируемых молекул. Большое значение имеет и гранулометрический состав адсорбента, характеризуемый содержанием фракций, задерживаемых ситами определенных размеров, а также прочность адсорбента при статических или динамических нагрузках. [c.238]

    Большое значение для технологии промывки и цементирования скважин имеют адсорбционные явления на поверхности раздела фаз. Тонкодисперсная твердая фаз а промывочных и тампонажных растворов является хорошим адсорбентом. В качестве адсорбен-тивов выступают защитные коллоиды в промывочных жидкостях, замедлители схватывания в тампонажных растворах и другие химические реагенты, вводимые в состав буровых жидкостей для регулирования их технологических свойств (понизители вязкости, водоотдачи и др.). Адсорбция широко используется при исследовании свойств твердой фазы коллоидных систем. Анализ изотермы адсорбции позволяет определить удельную поверхность твердой фазы (методом БЭТ), а также установить характер взаимодействия (физический или химический) адсорбтива с поверхностью адсорбента. [c.5]

    Другой способ получения активного углерода из каменных углей заключается в модифицировании каменного угля щелочными металлами, что обеспечивает способность угля к поглощению веществ большей молекулярной массы, а также высокую скорость процессов адсорбции-десорбции. Традиционные методы получения адсорбет-ов из ископаемых углей приводят обычно к продукту с широким распределением пор по размерам, в связи с чем углеродные сорбенты из углей имеют низкую селективность и относительно невысокую удельную поверхность и, как следствие, ограниченные возможности для практического использования. Было установлено, что свойства угля во многом определяются кислородсодержащими группами. В каменном угле, кроме кислородсодержащих, существенную роль играют ароматические и гидроароматические фрагменты. Исходя из этого, модифицирующие обработки были направлены на карбоксильные, карбоксилатные, гидроксильные и другие кислородсодержащие группы, а также на ароматические структуры. Химическое модифицировании каменных углей приводит к получению адсорбентов, сорбирующих метиленовый голубой до 150-170 мг/г, йод до 130%. Полученные результаты явились предпосылкой изучений свойств углей с целью получения из них углеродного материала с высокой удельной поверхностью. [c.51]

    PURASPE 2250/6255 не являются физическими адсорбентами, поэтому они преднамеренно изготовляется с меньшей площадью удельной поверхности, чем обычные алюмооксидные поглотители. В результате резко снижается вероятность того, что H I будет сохраняться в свободном виде, либо адсорбироваться в частично диссоциированном состоянии на поверхности гранулы поглотителя. Поверхность хлоропоглотителей PURASPE не является кислотной, благодаря чему устраняются факторы, способствующие протеканию таких побочных реакций, как образование органических хлоридов, а также поликонденсация и полимеризация органических соединений. [c.12]

    I тип — непористые адсорбенты. Сюда относятся MOHO- и поликристаллические вещества, такие, как графитиро-ванпая сажа, хлорид натрия, а также аморфные непористые вещества. Удельная поверхность подобных адсорбентов может колебаться в широких пределах — от сотых долей до сотен квадратных метров на грамм. Характерна для этого типа независимость адсорбционных свойств единицы поверхности от удельной поверхности. [c.108]

    Удельную поверхность адсорбентов на основе хроматографических измерений определяли Нельсон и Эггертсен, а также Рогинский, Киселев и др. Метод определения коэффициентов активности разбавленных растворов в процессе растворения газа или пара в жидкости предложили Кейлеманс и Квантес. Этот метод сыграл и продолжает играть важную роль в термодинамике разбавленных растворов и ее практическом приложении, например в технологии разделения экстрактивной дистилляцией. Метод получил дальнейшее развитие в работах Мартайра, Короля, Вяхирева, Решетниковой, Царфина и др. [c.250]


Смотреть страницы где упоминается термин Поверхность адсорбента также удельная поверхность : [c.467]    [c.323]    [c.103]    [c.513]    [c.589]    [c.72]    [c.126]    [c.31]    [c.109]    [c.188]   
Адсорбция газов и паров Том 1 (1948) -- [ c.367 , c.490 ]

Адсорбция газов и паров (1948) -- [ c.367 , c.490 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность адсорбента

Поверхность адсорбента поверхностях

Поверхность удельная



© 2025 chem21.info Реклама на сайте