Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий мышьяка

    Бор, кремний, германий, мышьяк, селен. [c.14]

    Из растворов отгоняют следовые количества бора, азота, кремния, серы, германия, мышьяка, селена, олова, сурьмы, галогенов и некоторых других элементов в виде летучих соединений Например, азот отгоняют из щелочных растворов в виде ам- [c.18]

    МЕДЬ цинк ГАЛЛИЙ ГЕРМАНИЙ МЫШЬЯК [c.24]

    Между металлическими и окислительными элементами нет резкой границы. Утрата металлического характера неизбежно сопряжена с появлением окислительных свойств. Однако среди элементов встречаются-такие, у которых металлические свойства крайне ослаблены, а окислительные свойства выявлены еще недостаточно. Для таких элементов промежуточного характера было бы целесообразно использовать название металлоиды. К этому классу элементов могут быть отнесены по два элемента из каждого периода, а именно бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, теллур, висмут, полоний. У всех этих элементов мы встречаемся с проявлением если не металлических, то во всяком случае ясно выраженных восстановительных свойств. Следует отметить, что даже у настоящих окислительных элементов (сера, селен, бром, иод, астат) также проявляются восстановительные свойства. В этом отношении от них резко не отличаются следующие за ними инертные элементы — криптон, ксенон, радон. Однако инертные элементы характеризуются полным отсутствием окислительных свойств. [c.35]


    Больщинство известных химических элементов, находясь в виде простых веществ, представляют собой металлы. Некоторые элементы (германий, мышьяк, сурьма, алюминий) в одних условиях ведут себя как металлы, в других условиях — как неметаллы. Все металлы имеют на внешнем энергетическом уровне небольшое число валентных электронов — электронные конфигурации металлов представлены в табл. I. Повторение химических свойств металлов обусловлено периодическим повторением строения электронных конфигураций внешних электронных уровней. [c.317]

    Донорная примесь. Примером мог ут служить атомы мышьяка, введенные в качестве добавки к германию. Мышьяк — элемент [c.457]

    Из 92 элементов периодической системы (от водорода до урана) к металлам относят 67. Остальные — неметаллы или элементы с промежуточными свойствами (германий, мышьяк и др.). Таким образом, элементов-металлов подавляющее большинство. [c.250]

    Неметаллы, как правило, являются диэлектриками. При смычных условиях они находятся либо в виде двухатомных (галогены, водород, азот, кислород) и одноатомных молекул (благородные газы), либо в виде атомных кристаллов (сера, фосфор, углерод, селен). Промежуточное положение между металлами и неметаллами занимают полуметаллы (бор, кремний, германий, мышьяк, сурьма, теллур). Для них характерны свойства металлов и неметаллов. Как правило, они имеют кристаллические атомные решетки с ковалентной связью. Многие из них являются проводниками. [c.246]

    Вдоль этой границы располагаются элементы, проявляющие свойства металлов и неметаллов. К ним относятся бор, кремний, германий, мышьяк, сурьма, теллур и астат, которые объединяются под названием полуметаллы (металлоиды). [c.64]

    Электролизом можно выделить индий в амальгаму практически полностью даже из очень разбавленных растворов. Но из-за ничтожного выхода по току затрачивается много электроэнергии. При электролизе совместно с индием переходят в амальгаму медь, олово, сурьма, свинец, кадмий, таллий и частично цинк, железо, германий, мышьяк. Большая часть мышьяка и германия восстанавливается до элементарного состояния и остается в растворе в виде взвеси марганец окисляется на аноде до двуокиси. [c.310]

    У церия плавление сопровождается переходом к более плотной упаковке атомов и увеличением плотности на 2,5%. Плавление углерода, кремния, галлия, германия, мышьяка, сурьмы, теллура, висмута связано с большими изменениями их строения и свойств. Описание этих изменений имеется в гл. X. С ними связаны высокие значения [c.285]

    Второе диагональное направление начинается слева снизу между ртутью и таллием и оканчивается вправо вверху между серой и фтором. Второе диагональное направление объясняется существованием элементов с инертными электронными парами. Вследствие этого тяжелые элементы с 18-электронной предпоследней оболочкой (5s 5d ") образуют устойчивые ионы, содержащие по два электрона на внешнем уровне (6s ) Hg", Т1+ и. Той же способностью к образованию инертных электронных пар обладают все элементы, расположенные на второй диагонали ртуть — таллий, индий — олово, германий — мышьяк, сера — хлор — фтор. Все элементы ниже этой диагонали тоже способны образовывать инертные электронные пары, например, свинец (И), сурьма (III), селен (IV), хлор (V). Два электрона на внешнем уровне стабилизуют предпоследнюю электронную оболочку. [c.18]


    Анионы, образуемые ванадием, хромом, германием, мышьяком, селеном, оловом (IV), теллуром, и другие относятся к 4-й аналитической группе по кислотно-щелочному методу. Вольфрамовая кислота выделяется в осадок вместе с хлоридами металлов по кислотно-щелочному методу. [c.21]

    Сопротивление скольжению определяется прежде всего характером сил связи между его структурными элементами. Так, например, валентная связь, обладающая строгой направленностью, резко ослабевает уже при незначительных смещениях атомов относительно друг друга. При сдвиге эта связь разрушается раньше, чем атомы успевают устанавливать ее с другими своими соседями. Поэтому кристаллы валентного типа (кремний, германий, мышьяк, селен, сурьма и др.) не проявляют заметной способности к пластической деформации. По исчерпании упругой деформации они хрупко разрушаются. Напротив, металлическая связь, не имеющая направленного характера, меняется очень слабо при тангенциальных смещениях атомов относительно друг друга. Поэтому возможны большие смещения одних частей решетки относительно других, что и определяет высокую степень пластичности (и даже сверхпластичность металлов [131). [c.172]

    Наиболее простым дефектом является примесный атом пятой или третьей группы таблицы Менделеева, Рассмотрим, например, атом мышьяка в германии. Мышьяк имеет пять валентных электронов. Для реализации ковалентной связи с ближайшими соседними атомами кремния требуется четыре электрона пятый электрон связан положительным зарядом иона. В этом связанном состоянии электрон обладает более низкой энергией, чем электрон, находящийся в зоне проводимости. При высокой температуре под влиянием тепловых колебаний связанный электрон может отрываться от иона мышьяка и перемещаться как свободный электрон иными словами, электрон может перейти в зону проводимости. Такого рода примеси или дефекты кристаллической решетки называют донорами. В основном состоянии они нейтральны, а при возбуждении дают положительно заряженный ион и один свободный электрон. [c.239]

    Растворимость углерода в жидком металле существенно изменяется при введении добавки другого элемента, причем эти изменения могут быть как в сторону уменьшения, так и в сторону увеличения растворимости. С этой точки зрения исследовались в основном металлы, используемые при производстве стали железо, никель, кобальт и марганец. Добавки германия, мышьяка,. селена, меди, палладия, индия, серы, золота, теллура, бора и фосфора понижают, а хрома, вольфрама, молибдена и церия увеличивают растворимость углерода в таких сплавах. Для разбавленных растворов установлена зависимость, связывающая изменение растворимости углерода с количеством введенного металла-добавки ДЛ/ = -1 стах где А1 1д изменение раство- [c.128]

    Металлические свойства наиболее ярко выражены у элементов, занимающих левый нижний угол периодической таблицы, а неметаллические свойства ярче всего выражены у элементов, занимающих правый верхний угол (без учета благородных газов). Ту часть таблицы, которая отделяет металлы от неметаллов, занимают элементы с промежуточными свойствами-, они расположены вблизи прямой линии, проходящей от средней точки в верхней части таблицы к ее нижнему правому углу. Эти элементы, называемые металлоидами, включают бор, кремний, германий, мышьяк, сурьму, теллур и полоний. [c.105]

    Длинные периоды периодической системы можно описать как короткие, в которые включено десять дополнительных элементов. Первые три элемента длинного периода между аргоном и криптоном — металлы калий, кальций и скандий —по свойствам напоминают соответствующие металлы предшествующего короткого периода — натрий, магний и алюминий. Аналогично последние четыре элемента — германий, мышьяк, селен и бром — похожи на предшествующие родственные им элементы, т. е. соответственно на кремний, фосфор, серу и хлор. Остальные элементы длинного периода — титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк и галлий — не имеют родственных им более легких аналогов они по своим свойствам не очень похожи ни на один легкий элемент. [c.472]

    В связи с этим Чепмен с сотр. изучали возгонку 37 элементов при 200 °С из растворов смеси хлорной и фтористоводородной кислот. Они сообщили, что в этих условиях теряются значительные количества бора, кремния, германия, мышьяка, сурьмы, хрома, селена, марганца и рения. В большинстве случаев потери объяснялись улетучиванием образующихся фторидов элементов. [c.124]

    В работе [134] было показано, что при очистке тетрахлорида германия от мышьяка ректификацией в кварцевой колонне была достигнута степень очистки К = 260, в то время как при очистке на такой же колонне из стекла пирекс К = 10. Это объясняется загрязнением тетрахлорида германия мышьяком, поступающим из стекла. [c.126]

    Способ, который применяется для растворения сульфидов группы мышьяка, имеет весьма существенное значение, если присутствуют германий, мышьяк (П1), олово (IV), сурьма (III) или селен, потому что при выпаривании солянокислых растворов могут произойти значительные потери этих элементов. В сомнительных случаях сульфиды лучше растворить в горячем разбавленном растворе едкого натра с добавлением хлора, перекиси водорода или перкарбоната калия, затем раствор охладить и подкислить кислотой, требующейся при предполагаемых отделениях. Если после предшествующих разделений ртуть осталась вместе с группой мышьяка, ее обычно выделяют до подкисления или окисления щелочного раствора, например обработкой нитратом аммония, как описано в гл. Ртуть (стр. 245). [c.95]


    Германий, подобно олову (стр. 341), можно определять иодометрическим титрованием после его восстановления гипофосфитом натрия . В условиях восстановления германия мышьяк восстанавливается до элементарного состояния и удаляется фильтрованием. Метод заключается в следующем. Анализируемый раствор, объем которого должен быть около 50 мл, а концентрация соляной кислоты 1 1, переносят в прибор для восстановления. Этот прибор представляет собой круглодонную колбу емкостью 250—350 мл с резиновой пробкой, в отверстия которой вставлены [c.351]

    Вещества, построенные из атомов промежуточных элементов, — элементарные металлоиды (бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, теллур). Характеризуются проч-ггымн кристаллическими решетками атомного типа (преимущественно нелетучи и тугоплавки) и наличием полупроводниковых свойств. [c.111]

    На практике описанные выше методы очистки обеспечивают меньшее содержание примесей. Особенно, вредное влияние на катодное осаждение цинка оказывают германий, мышьяк и сурьма. Возможно, что эти примеси равномерно распределяются в цинке при совместном осаждении, и перенапряжение водорода на них мало. Кроме того, они образуют гидриды типа ОеН4. [c.273]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    При анализе таких твердых веществ, как кремний, германий, мышьяк, селен, олово, сурьма, хром, элементы основы отгоняются в виде летучих галогенидов, например кремний (и кремнезем) в виде 31р4. Это позволяет определять в остатке после отгонки до 10- % железа, индия, меди, никеля, таллия, цинка, фосфора, алюминия и некоторых других элементов. [c.19]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    Ампулы из кварцевого стекла печь с силитовым или нихромовым нагревателем и терморегулятором устан.овка для откачки и отпаивания ампул ХА-термопары и потенциометр ПП-63 металлический индий, сурьма, висмут, теллур, германий, мышьяк. [c.63]

    Все элементы в периодической системе подразделяют на а) металлы (наибольшее число) б) металлоиды (металлоподобные) — полупроводниковые элементы, а именно бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, олово, сурьма, теллур, иод (всего 12), расположенные между металлами и неметаллами по диагональному направлению в) неметаллы (15 элементов) металлоиды и неметаллы частично перекрывают друг друга г) инертные элементы — группа VIПА (6 элементов). Подразделение элементов на эти четыре типа имеет большое значение для аналитической химии. [c.13]

    Известны следующие методы, основанные на равновесии этих типов выделение определяемых элементов Б виде летучи соединений с кислородом, например воды, диоксида углерода, серы в виде 802 или 50з) выделение элементов в виде летучих соединений с галогенами, например отгон]<а АзС1з, СгСЬ, ОеСи, 8ЬС1з и др. выделение элементов в виде летучих соединений с водородом, например АзНз и др. метод газовой хроматографии, в котором некоторые неорганические вещества переводят в газообразное состояние, например кремний, германий, мышьяк, олово, бериллий определяют в виде летучих гидридов после их отделения от многих элементов, не образующих летучих соединений с водородом. [c.27]

    На практике описанные выше методы очистки обеспечивают меньшее содержание примесей. Особенно вредное влияние на катодное осаждение цинка оказывают германий, мышьяк, сурьма. Возможно, что эти примеси равномерно распределяются в цинке при совместном осаждении. Перенапряжение водорода на них мало, что снижает выход металла в катодном осадке. Кроме того, они образуют гидриды типа ОеН4. Выделение ОеН4 с поверхности катода или реакция АзНз и 5ЬНз с ионами Аз и ЗЬ, находящимися в растворе, способствуют разрыхлению поверхности цинка. [c.388]

    Как уже указывалось, многие гетерополисоединения вольфрама и молибдена нашли практическое применение. В частности, они широко ипользуются в аналитической химии для определения ряда элементов. Так, фосфоромолибдат аммония-магния используется для определения магния, молибдена, фосфора. Для определения кремния, фосфора, германия, мышьяка и церия также применяют соответствующие гетеро-полимолибдаты. Рубидий и цезий определяются в виде кремнемолибда-тов и кремневольфраматов. [c.244]

    Очистка экстракцией от кремния, германия, мышьяка и фосфора. К 40 г молибдата аммония во фторопластовом стакане приливают 100 мл нагретой до кипения бидистил-лированной воды и размешивают фторопластовой палочкой. После растворения фильтруют через фильтр, помещенный в полиэтиленовую воронку. К фильтрату добавляют при перемешивании азотную или серную кислоту до pH 1,5, через [c.16]

    Поллуцитовую руду измельчают до 60—100 меш и обрабатывают при непрерывном перемешивании кипящей 6—12 н. соляной кислотой в реакторе с обратным холодильником (конденсационной колонкой). Температура кипения обычно колеблется в зависимости от состава руды и концентрации кислоты от 90 до 110°С, а продолжительность обработки —от 8 до 30 ч [221]. В реакцию вводят двукратный (от теоретически необходимого для полного разложения) избыток соляной кислоты [219, 223]. При кипячении реакционной смеси германий, мышьяк, селен, теллур и бор отгоняют из раствора в виде летучих хлоридов, и при комплексной обработке руды они могут быть собраны в отдельном сборнике. [c.281]

    От германия мышьяк(1П) можно количественно отделить осаждением сероводородом под давлением пз раствора 0,004—0,09 N по H2SO4 или НС1 содержащего 1 — 2% сульфата или хлорида аммония [480]. Осадок сульфида мышьяка отфильтровывают и промывают сероводородной водоп, содержащей [c.116]

    В результате граница между "металлическими" и "неметаллическими" р-элементами в периодической системе проходит по диагонали сверху вниз направо, между бором и алюминием, кремнием и германием, мышьяком и сурьмой, теллуром и полонием. Элементы, расположенные ниже этой диагонали, являются элек-тронно-дефицитными. [c.250]

    Возникает, правда, задача — получить амальгаму анализируемого металла. Эта задача выполнима для большинства металлов, но не для всех например, большие трудности возникают нри получении амальгамы германия, мышьяка, вольфрама и некоторых других. Вообш е же амальгаму анализируемого металла можно получить одним из следующих трех способов  [c.135]

    Интересным примером является восстановление гетерополи-молибденовых кислот германия, мышьяка и фосфора на графитовом электроде [37, с. 232]. Установлено, что электровосстановление гетерополимолибденовых кислот в неводных средах на фоне хлористого лития протекает в две стадии, а в спиртов ых растворах— с участием четырех электронов и ионов водорода. [c.108]

    Отделение германия. Отделять германий, мышьяк, сурьму и олово от других элементов сероводородной группы и один от другого удобно перегонкой. Германий может быть сначала отделен от мышьяка (V) перегонкой из солянокислого раствора, а мышьяк затем отделяют от других членов группы повторной перегонкой после восстановления его до трех- валентного. При этом нужно обращать внимание на темпёратуру, при которой происходит дистилляция. Главная трудность заключается в том, чтобы предупредить одновременное улетучивание олова, сурьмы и отчасти селена. Очевидно, что необходима большая осторожность для предупреждения потери этих элементов во время таких предварительных операций, как кипячение солянокислых растворов германия, селена и трехвалепт-ного мышьяка. (Опз сание метода см. в гл. Германий , стр. 345.) [c.95]

    От германия мышьяк (III) можно количественно отделить осажде-нйем сероводородом под давлением из раетвора, 0,004—0,09 н. по содержанию свободной серной кислоты и содержащего 1—2% сульфата аммонйя. Серную кислоту и сульфат аммония можно заменить соляной кислотой и хлоридом аммония ц тех же концентрациях, если осаждение проводится только с целью выделения мышьяка. Но такая замена недопустима,, когда надо также определять и германий, так как последний может ча -стично улетучиться в виде хлорида германия при последующих операциях. После осаждения сероводородом осадок сульфида мышьяка (III) отфильтровывают и промывают сероводородной водой, содержащей сульфат аммония. Фильтрат подкисляют серной кислотой до 6 н. ее концентрации и осаждают германий также в виде сульфида. Если в осадке сульг фида германия будет более 0,2% мышьяка, он будет заметно окраше в желтый цвет. [c.306]

    Панет и Иохимоглу [189] сравнивали токсичность гидридов германия, мышьяка и олова они установили, что токсичность в этом ряду возрастает. Концентрация гидрида германия [c.230]


Смотреть страницы где упоминается термин Германий мышьяка: [c.18]    [c.219]    [c.162]    [c.192]    [c.34]    [c.764]    [c.367]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Фотометрический анализ методы определения неметаллов (1974) -- [ c.143 , c.165 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.723 , c.724 , c.730 ]




ПОИСК







© 2025 chem21.info Реклама на сайте