Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы, анализ определение алюминия

    Описан экстракционно-фотометрический метод одновременного определения алюминия и железа. Принцип метода состоит в том, что хлороформный экстракт оксихинолинатов алюминия и железа фотометрируют при 390 при 470 ммк. Метод использован для определения алюминия и железа в титане и ванадии [187]. Аналогичный вариант применен для определения алюминия и железа в магнии [188]. Экстракция оксихинолината железа и фотометрирование экстракта использованы для определения железа в крови [189]. Ванадий экстрагируют хлороформом в виде оксихинолината при pH 3,5—4,5 и полученный экстракт фотометрируют при 550 ммк [190]. Методики экстракционно-фотометрического анализа в виде оксихинолинатов разработаны для определения цинка и кадмия в присутствии больших количеств кальция [191], кальция в солях, технических продуктах и породах [192], олова в железе и стали [193], урана в присутствии тория, лантана, иттрия или самария [194] и в висмутовых сплавах [195]. Цинк и магний в форме оксихинолинатов легко экстрагируются метил-изобутил кетоном. Экстракты имеют максимумы светопоглощения [c.243]


    Спектральные методы определения алюминия нашли очень широкое применение при анализе металлов, сплавов и других материалов. Аналитические линии алюминия, используемые при спектральном. анализе, находятся в ультрафиолетовой области спектра. В табл. 13 приведены основные чувствительные линии алюминия. Наиболее чувствительные линии алюминия в дуге — линии с к = = 3961,531 3944,031 и 3082,161 А. Из них чаще всего пользуются линиями с X = 3082, 16 и 3961, 53 А. Самые чувствительные линии [c.147]

    При анализе цинковых сплавов для маскирования мешающих элементов необходимо вводить тиогликолевую кислоту. Методы определения алюминия в медных сплавах с алюминоном и эриохромцианином К можно использовать и для определения его в цинковых сплавах. [c.216]

    Для определения влияния других элементов, образующих трех-и четырехкомпонентные системы, было исследовано смачивание твердых молибдена и ниобия сплавами на основе алюминия с различным содержанием кремния, титана и хрома. Двойным дуговым переплавом было получено десять сплавов, данные химического анализа которых показали наличие 0—12,30% титана, 0,42— 9,46% кремния и 2,28—9,88% хрома. Температуры, при которых краевые углы смачивания расплавами молибдена и ниобия равны 45 , 15° и 0°, приведены в таблице. [c.57]

    Прямой химический метод определения алюминия в титане и его сплавах пока не разработан. Методика анализа зависит от способа отделения титана либо его осаждают в виде гидроокиси титана из щелочных растворов , либо в виде купфероната титана из кислых растворов . Методы разделения, включающие осаждение основного металла, не всегда приемлемы, поскольку другие ионы соосаждаются или сорбируются осадком. Однако в рекомендуемых авторами методах потери алюминия незначительны в том интервале концентраций, для которого эти методы разработаны. [c.17]

    Бензоатный метод выделения и определения алюминия применен к медным [520, 521, 676, 1015], магниевым [362, 976, 1199] и цинковым [976] сплавам, к титановым концентратам [209], к фосфатным породам [1275]. Бензойная кислота была использована в схеме качественного анализа в присутствии фосфатов [537]. [c.52]

    Предназначен для анализа любых марок сталей, включая определение углерода, серы и фосфора, а также для анализа сплавов на основе алюминия, меди, никеля, хрома, цинка, титана и др. [c.389]

    Алпатов М. С. Спектрографический анализ магниевых сплавов с применением дуги переменного тока. [Определение алюминия, цинка, марганца, кремния, меди]. Тр. Всес. н.-и. ин-та авиац. м-лов (ВИАМ), 1949, 2, с. 52—54. 2921 [c.123]


    Описанная методика оказалась вполне применимой к определению алюминия в сплавах типа электрон . Ввиду значительного содержания алюминия в этом сплаве, навеску 0,1 г растворяли в мерной колбе на 100 мл, откуда для анализа отбирали пробы по 2—3 мл. Так, в сплаве, содержащем примеси Ре, 2п (5 и 13%), Мп (0,4%) и А1 (1,57%), найдено путем осаждения меченым фосфатом 1,50, 1,50 и 1,52% А1. Продолжительность одного определения 1,5—2 часа. [c.8]

    При анализе сплавов, содержащих меньше 4% алюминия, растворяют 0,2 г сплава и проводят определение так, как описано в предыдущем параграфе. С небольшими изменениями процесса осаждения бензоата алюминия этот метод можно использовать для определения алюминия в медных сплавах. [c.489]

    В качестве примера применения этого метода можно указать на определение алюминия и магния в цинковых сплавах, используемых для литья под давлением. Сплавы могут содержать 1,5—4,5% алюминия и 0,02— 0,10% магния и небольшие количества меди и железа. Анализ проводят с 1 г сплава. Его растворяют в серной кислоте, разбавляют раствор до 200 мл и переносят его в электролизер с ртутным катодом. Раствор подвергают электролизу в течение ночи при силе тока 1,0—1,5 а или при большей силе тока в течение менее длительного отрезка времени при условии перемешивания. Для испытания полноты осаждения цинка из электролизера берут пипеткой 1 мл раствора и обрабатывают его [c.111]

Рис. 80. Фон при определении алюминия в сплаве Альнико. Амплитудная селекция облегчает анализ, уменьшая роль фона и линий никеля и титана (V и III порядки отражения), входящих в состав сплава 123] Рис. 80. Фон при <a href="/info/130550">определении алюминия</a> в сплаве <a href="/info/810416">Альнико</a>. <a href="/info/860282">Амплитудная селекция</a> облегчает анализ, уменьшая <a href="/info/1527047">роль фона</a> и <a href="/info/649254">линий никеля</a> и титана (V и III порядки отражения), входящих в состав сплава 123]
    В случае определения алюминия, кремния, калия, серы и кальция в продуктах цементного производства фактически изменится лишь процесс подготовки пробы и потребуется соответствующий комплект эталонов. Если в литых образцах алюминиевых сплавов при подготовке пробы достаточно заточить анализируемую поверхность, то при анализе порошков желательно, чтобы проба имела вид таблетки, спрессованной из порошка с выбранной крупностью зерен. [c.269]

    Метод основан на измерении светопоглощения растворов лантаноидов в присутствии арсеназо I при Я = 575 нм. Метод применим для анализа производственных растворов и сплавов на основе алюминия. Измерения проводят по методу полной дифференциальной фотометрии. Относительная ошибка определения составляет 0,5%. [c.108]

    Определение мышьяка в сплавах производится по методу, рекомендуемому для анализа чистого алюминия (см. стр. 61). [c.171]

    Спектр индия в пламени состоит из атомных линий 271,0 275,4 303,9 325,6 410,2 451,1 нм (ммк) [532]. Последняя линия наиболее интенсивная и обычно используется для анализа. Определение отличается высокой избирательностью, поскольку в области 451 ммк в пламени смеси ацетилена с воздухом излучают только барий, родий и цезий. Показано, что в пламени смеси ацетилена с воздухом интенсивность линий 410,2 и 451,1 ммк в логарифмическом масштабе пропорциональна концентрации индия в растворе в пределах 10 —10" мол л [533]. Ацетон в количестве 80% (объемн.) увеличивает интенсивность линии индия [451,1 нм (ммк)] в пламени гремучего газа в 37 раз [534]. Рост фона авторы во внимание не принимали. На определение индия не влияют значительные количества цинка, кадмия, олова. При сутствие в растворах железа, меди, алюминия в количествах превышающих 1%, приводит к снижению интенсивности излуче ния индия. Азотная и соляная кислоты при концентрациях до 1-н не влияют на интенсивность линии 451 нм (ммк), а серная кис лота в такой же концентрации заметно ее снижает [535]. Опреде ление индия в магниевых сплавах (0,1—2%) может быть выпол нено спектрофотометрированием солянокислых растворов спла 320 [c.320]

    Описаны методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов, шлаков, сплавов на основе алюминия, магния и меди. Приведены методики определения большого числа легирующих элементов в этих материалах. [c.29]

    Детально изучено отделение алюминия от основных и второстепенных составляющих этих сплавов и Определение алюминия с помощью ауринтрикарбоновой кислрты Так как анализ длинный, мы не приводим здесь подробное описание, а даем характеристику метода в общих чертах. Сурьму и олово отгоняют в виде бромидов, а свинец удаляют в виде сульфата. Оставшиеся небольшие количества свинца, железа и многих других элементов (стр. 199) удаляют электролитически на ртутном катоде. Экстракцией купферратов хлороформом удаляют титан, цирконий, следы железа (III), и частично ванадий (V). Экстракцией 8-оксихинолятов хлороформом при pH 5 в присутствии перекиси водорода отделяют алюминий от бериллия, скандия, иттрия, хрома и ванадия уран сопутствует алюминию. Окончательное определение алюминия проводят в присутствии меркаптоуксусной кислоты. Показано, что 10—80 у алюминия из образцов весом 2 г извлекаются достаточно полно. [c.215]


    С. Мухина, Е. И. Никитина, Л. М. Буданова, Р. С. Володарская, Л. Я. Поляк, А. А. Тихонова. Методы анализа металлов и сплавов. Обороигиз, 1959, (528 стр,), 15 книге рассмотрены методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов и н1лаков, а также сплавов на основе алюминия, магния и меди. Приведены методики определения большого количества легирующих элементов в этих материалах. Вводная глава содержит характеристику физико-химических методов анализа. [c.491]

    Аналогичный метод применил Мор [9861 при определении алюминия в медных сплавах. Ройтель П109] при анализе цинка и его сплавов использовал для маскировки цианид в сочетании с винной или лимонной кислотой. Если в сплаве присутствует магний, то он осаждается совместно с алюминием, поэтому необходимо определить его содержание и ввести поправку (следы магния во внимание не принимают). Результаты очень точные, если 2п А) < 100. [c.83]

    Радиометрическое определение алюминия в силлиманитовых рудах и продуктах обогащения с применением Fe и Со [1071 анализ смеси оксихинолинатов А1, Ga и 1п с использованием их инфракрасных спектров [794], определение алюминия в сплавах железа по величине термоэлектрического потенциала [9011, седи-ментометрическое определение алюминия [1035] и термометрическое определение (по изменению температуры анализируемого раствора после прибавления титранта) [1137] используются редко [c.167]

    Дюбель и Флюршютц [689] определяют алюминий в магнитных сплавах весовым оксихинолиновым методом после удаления мешающих элементов электролизом на ртутном катоде. Метод дает хорошо воспроизводимые результаты. При анализе сплава альнико с —8,8% AI отклонения отдельных, результатов от среднего арифметического составляют 0,01—0,04% Подобный метод использован для микровесового определения алюминия (вес проб 0,02—0,05 г) 18781 [c.210]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Метод капельного анализа дает возможность идентифицировать титан и его сплавы, содержащие олово, марганец, ванадий, медь и молибден. Способы непосредственного определения алюминия не найдены, но тройные сплавы, содержащие алюминий, легче идентифицировать по положительной реакции с другими металлами, сопутствующими алюминию, например с оловом в титаналюминий-оловянных сплавах и ванадием в титаналюминийванадиевых спла- [c.116]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Примечание. Цинк, свинец, никель, олово и марганец в тех копи-нествах, в которых они находятся в медно-цинковых сплавах, определению алюминия не мешают. Влияние ионов железа устраняют введением в раствор аскорбиновой кислоты, которая восстанавливает ионы Ре + до Fe ", образующих с эриохромцианином бесцветный комплекс влияние ионов меди устраняют добавлением тиосульфата натрия, образзгаощего бесцветный тиосульфатный комплекс. Анализ выполняется за 12—15 мин с ошибкой, не превышающей 3 отн. %. [c.94]

    Отмечается [188], что при нагреве под закалку и отжиге в окислительной атмосфере в некоторых сплавах наблюдается выгорание алюминия. Поэтому образцы перед анализом необходимо затачивать на глубину не менее 1—2 мм. По данным [188], изменения структуры сплавов магнико и альсифер, обусловленные термической обработкой, не сказываются на результатах спектрального анализа. В сплаве алии закалка приводит к некоторому завышению результатов определения никеля. [c.111]

    Глушкина Р. Б. Исследование влияния количества коллектора на результаты определения алюминия в цинковых сплавах. В сб. Новые методы контроля и анализа в металлургическом производстве.. Под ред. К- И. Гостева, М., Оборонгиз, 1951, с. 34—37. 3527 [c.145]

    ГОСТ 2963-45. Материалы и изделия огнеупорные хромомагнезитовые. Методы химического анализа. 3610 ГОСТ 3003-50. Покрытия медные, никелевые и многослойные. Методы химического контроля толщин. Взамен ГОСТ 2997-45 и ГОСТ 3003-45. 3611 ГОСТ 3194-46. Сетки катализаторные из платиновых сплавов. Методы химического анализа. 3612 ГОСТ 3312-46. Вода хозяйственно-питьевого и промышленного водоснабжения. Методы технологического анализа. Определение умягчаемости воды известково-содовым способом (рекомендуемый). 3613 ГОСТ 3221-46. Алюминий. Метод спектрального анализа (рекомендуемый). 3614 ГОСТ 3240-46. Сплавы магниевые литейные. [c.147]

    Захария Н. Ф. Методика количественного спектрального определения алюминия в оловянистых бронзах. Изв. АН СССР. Серия физ., 1945, 9, № 6, с. 629—632. Резюме на англ. яз. 3937 Захария Н. Ф. Количественный спектральный анализ некоторых цветных сплавов на спектрографе со стеклянной оптикой. [Определение А1 в оловянистых бронзовых сплавах, Mg и Мп в алюминиевых сплавах]. Зав. лаб., 1947, 13, № 2, с. 226—227. 3938 Захаров Е. Л. Колориметрический способ определения кремнекислоты. Описание изобретения к авт. свидетельству. № 66340 (1946). Свод изобретений Союза ССР. 1946 г. М., Госпланиздат, 1948, вып. 5. [c.158]

    Тананаев И. В. Физико-химический анализ систем, имеющих значение в аналитической химии, [Сообщ,] 15, О фототурбиди-метрическом определении палладия, ЖАХ, 1949, 4, вып, 2, с, 67—74, 5734 Тананаев И. В. и Абилов С. Т. Прямое определение алюминия в сплавах [содержащих Ре, Сг, Т1, 51, Со, N1, гп, Мп]. ЖПХ, 942, 15, № 1-2, с. 61—70. Резюме на англ. яз. Библ, . 35 назв. 5735 [c.220]

    Много органических реактивов было также снова исследовано при совместном их действии с комплексонами. Уже известное определение урана 8-оксихинолином (стр. 157) было успешно применено при анализе сплавов урана с висмутом [45]. В щелочном растворе в присутствии комплексона уран количественно выделяется оксином. Затем, подкисляя фильтрат, выделяют количественно висмут в виде оксихинолята. Весовое определение алюминия оксином в растворе комплексона, цианида калия и тартрата следует считать высоксселективным [46], поскольку оно позволяет определять алюминий в присутствии целого ряда элементов, в том числе и железа. Этот метод был использован для анализа сплавов алюминия с медью. Оксиновый метод определения вольфрама (стр. 159) был практически использован для анализа смеси вольфрама и тория [47]. В аликвотной части раствора определяют вольфрам осаждением оксихинолином с последующим йодометрическим титрованием. В другой части раствора можно определить торий прямым титрованием комплексоном при одновременном Маскировании вольфрама перекисью водорода. [c.540]

    С помощью внутреннего электролиза в работе [67а, 69] проводили определение В1, РЬ, Рс1, 5п и Т1 в чистом цинке и цинковых сплавах в интервале концентраций 0,1—0,0001% и свинец в железе в области 0,1—0,0001% в первом случае0,5— 2 г образца цинка растворяли в разбавленной соляной кислоте и проводили электролитическое осаждение примесей на стержне из чистого цинка диаметром 6 мм. Спектры возбуждались в дуге переменного тока при винтообразном передвижении нижнего цинкового электрода с осажденными примесями верхний электрод из алюминия. Внутренним стандартом при анализе сплавов служит медь, а при анализе металлического цинка — никель. Электролитическое осаждение свинца проводили на кадмиевом стержне. Спектры возбуждались в искре. Ошибка при концентрации свинца 0,0001% составляет 8%. Подобный метод применяли [64] при определении малых количеств ртути в растворе (осаждали ее на чистом цинковом электроде), при определении золота и других благородных металлов [65], при анализе чистого алюминия и в других случаях [66, 68]. Имеются спектральные методы выделения большого числа металлов Ре, Сг, №, Со, 2п, Си, Мо, 5п, Т1, С(1, В1 и т. д., при обогащении пробы путем электролиза на поверхности ртутного катода [70—72, 444]. [c.15]

    Определение марганца в количествах 0,005—2% в сплавах на основе алюминия или магния, содержащих в качестве добавок медь, цирконий, редкоземельные элементы, методом спектрофотометрии пламени может быть выполнено фотометрированием введенных в пламя смеси ацетилена с воздухом солянокислых растворов материалов. Анализы могут быть выполнены с помощью спектрофотометров пламени, собранных на основе монохроматоров ЗРМ-3, УМ-2, ИСП-51 и др., а также приспособленных для пламеунофотрметрических определений адсорбционных спектрофотометров СФ-4, СФ-5, СФД-1 и др. [c.325]


Смотреть страницы где упоминается термин Сплавы, анализ определение алюминия: [c.77]    [c.145]    [c.175]    [c.155]    [c.30]    [c.31]    [c.6]    [c.738]    [c.111]    [c.429]    [c.69]    [c.152]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах

Анализ определение



© 2024 chem21.info Реклама на сайте