Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия хлора и щелоч

    Благодаря указанным достоинствам электрохимические про- изводства охватывают весьма многочисленный и разнообразный круг процессов, важнейшими из которых являются 1) получение хлора, щелочей, водорода и кислорода 2) получение неорганических окислителей (перманганатов, персульфатов, перекиси водорода и др.) 3) получение и рафинирование металлов (алюминия, магния, цинка, натрия, меди и др.) 4) декоративные и защитные от коррозии покрытия металлов. [c.322]


    Электрохимические методы производства в ряде случаев имеют преимущества перед химическими упрощается технологический процесс, более полно используется сырье и энергия, одновременно может производиться несколько ценных продуктов, продукты получаются высокой степени чистоты, недостижимой при химических способах производства. Благодаря указанным достоинствам электрохимические методы охватывают многочисленные и разнообразные производства, важнейшими из которых являются получение хлора, щелочей, водорода, кислорода, неорганических окислителей (перманганатов, персульфатов, перекиси водорода и др.), получение и рафинирование металлов (алюминия, магния, цинка, натрия, меди и др.), декоративные и защитные (от коррозии) покрытия металлов. [c.410]

    Электрохимическими называются производства, в которых химические процессы протекают под действием постоянного электрического тока. В промышленности широкое распространение получил электролиз водных растворов и расплавов. Электрохимические методы производства в ряде случаев имеют преимущества перед химическими упрощается технологический процесс, более полно используется сырье и энергия, одновременно может производиться несколько ценных продуктов, продукты получаются высокой степени чистоты, недостижимой при химических способах производства. Благодаря указанным достоинствам электрохимические процессы используют при производстве важнейших продуктов хлора, щелочей, водорода, кислорода, неорганических окислителей (перманганаты, персульфаты, перекись водорода и др.), при получении и рафинировании металлов (алюминия, магния, цинка, натрия, меди и др.), декоративных и защитных (от коррозии) покрытий металлов. [c.129]

    Электрохимические процессы применяются в промыш-1 ленности для получения хлора, щелочей, водорода и кислорода, перекиси водорода, перманганатов, а также многих металлов алюминия, меди, цинка и т. п. Такие металлы, как алюминий, магний, натрий, литий и другие, производят исключительно электрохимическими способами. Кроме того, электрохимия дает большие возможности для защиты металлов от коррозии нанесением тонких гальванических покрытий. [c.210]

    В электротехнике широко используют некоторые полимерные материалы, диэлектрические свойства которых невысокие, но они сочетаются с рядом ценных физических, химических и технологических свойств. Таким материалом является, например, поливинилхлорид. Вследствие несимметричного строения макромолекул и сильной их полярности поливинилхлорид худший диэлектрик, чем полиэтилен и полистирол. Однако такие его ценные свойства, как инертность по отношению к кислотам и щелочам, водостойкость, газонепроницаемость, невоспламеняемость и т. п., способствуют исключительно широкому применению поливинилхлорида для изоляции защитных оболочек кабельных изделий, проводов, для изготовления трубок, листов, лент и т. п. При дополнительном хлорировании поливинилхлорида получают перхлорвиниловый полимер, содержащий 64—65% хлора. Из него производят волокно хлорин, ткани, ленты, лаки, эмали, предохраняющие электроаппаратуру от коррозии. [c.339]


    Два варианта получения глицерина, изображенные в нижней части схемы, характеризуются использованием для этого процесса хлора и щелочи. Оба необходимых реагента могут быть получены одновременно электролизом водного раствора поваренной соли. Все же расход этих дополнительных реактивов, а также необходимость использования устойчивой к коррозии аппаратуры удорожают эти пути синтеза глицерина. [c.164]

    Общеизвестно ускоряющее действие ионов хлора на коррозию железа в нейтральных растворах. Такое же действие хлора на пассивное железо проявляется и в щелочных растворах. Ионы хлора в щелочах активируют железо, на поверхности которого имеется фазовый окисный или адсорбционный слой. Активация наступает при достижении некоторого достаточно положительного потенциала, при котором ионы хлора еще могут окисляться до СЬ, но образуют соединение с железом, вытесняя кислород или гидроксил из окисного железа. Вытеснение кислорода хлором на поверхности железа можно объяснить большой способностью к деформации ионов хлора по сравнению с ионами кислорода. После активации железо начинает растворяться с образованием ионов двухвалентного железа, тогда как до активации оно значительно медленнее растворялось с образованием трехвалентных ионов. Аналогичные явления наблюдаются в присутствии других анионов. По своей способности к активации пассивных электродов анионы могут быть расположены в следующем порядке  [c.446]

    В растворах щелочей, применяемых для электролитического разложения воды, не должны содержаться примеси, вступающие в электродные реакции и приводящие к коррозии отдельных элементов электролизера. Дистиллированная или обессоленная (деминерализованная) вода, используемая для приготовления раствора электролита, должна содержать не более ЫО-з кг/мз железа, 2-10 кг/м хлоридов и 3-10 кг/м сухого остатка. Несмотря на такие жесткие требования, в процессе электролиза все же имеет место накопление примесей, оказывающих вредное влияние. Ионы хлора вызывают разрушение анодных материалов. Накопление большого количества карбонат-ионов , образующихся при растворении в электролите диоксида углерода из атмосферного воздуха, приводит к увеличению электрического сопротивления электролита и, следовательно, повышает напряжение на электролизере. На катоде электролизера могут восстанавливаться ионы железа, образуя так называемую железную губку . Катодный осадок может достичь диафрагмы, отделяющей катодное пространство электролизера от анодного, и за счет восстановления присутствующего в ней гидроксида железа привести к металлизации диафрагмы. В результате в анодном пространстве электролизера возможно выделение водорода и образование взрывоопасной смеси газов. [c.21]

    Результаты большинства исследований подтверждают, что в средах, в которых тантал абсолютно стоек (скорость коррозии менее 0,01 мм/год), сплавы, с содержанием ниобия до 50 мас.% также устойчивы против коррозии. Их коррозионная стойкость соответствует нормам 1 балла (скорость коррозии менее 0,1 мм/год). К таким средам относятся кипящие растворы серной, азотной, соляной и фосфорной кислот, растворы щелочей, влажный хлор и его соединения и другие агрессивные среды. [c.78]

    Если испытывать образцы в воде и в разбавленных растворах ислот, щелочей, не содержащих хлористого натрия, то, кроме pH растворов, на скорость коррозии оказала бы также влияние весьма различная их электропроводность и концентрация ионов хлора. Добавление в растворы хлористого натрия позволяет отчетливее выявить влияние на скорость коррозии именно pH раствора. [c.105]

    Титан корродирует при воздействии фтористого, водорода и его растворов, фтора, щавелевой и муравьиной кислот, горячих концентрированных щелочей. Он также поддается коррозии в серной и соляной кислотах, но даже незначительное содержание в них окислителя ведет к образованию на его поверхности защитной пленки. Поэтому титан стоек при действии на него смеси концентрированных серной и азотной кислот, а также концентрированной соляной кислоты, содержащей свободный хлор .  [c.108]

    Никель, как и железо, способен к пассивации. Его пассивность в отличие от железа более устойчива и может возникать на воздухе, в водных растворах щелочи и при анодной поляризации. Добавка никеля к стали или чугуну обычно оказывает облагораживающее действие а черные металлы, их сплавы с никелем более стойки к коррозии. Пассивность никеля обусловлена образованием стойких окисных пленок, закрывающих поверхность металла и затрудняющих переход его ионов в раствор. В зависимости от способа пассивации строение и состав окисных пленок могут быть различны. Пассивность никеля может вызываться хемосорбцией гидроксильных или кислородных ионов иа поверхности металла, образованием его окислов и гидроокисей или других нерастворимых в данном растворе соединений. Пассивирование никеля при анодной поляризации определяется свойствами анионов электролита и сильно зависит от величины pH раствора чем больше его pH, тем скорее и полнее пассивируется металл . Пассивации способствуют также повышение анодной плотности тока, снижение температуры и наличие в растворе ионов никеля. Противоположное влияние на пассивацию никеля оказывает присутствие в электролите хлор-иона, сульфатов, карбонатов и других кислотных анионов 5 З", а также наличие примесей в металле Агрессивное действие ионов хлора и кислородсодержащих анионов проявляется тем сильнее, чем меньше концентрация щелочи. В растворах карбонатов никелевый анод нестоек. [c.212]


    Медь устойчива против атмосферной коррозии, но при. температуре выше 180°С она начинает окисляться. Коррозия меди в морской воде незначительна, однако при этом медь не должна контактировать со сталью. Медь стойка к серной кислоте и щелочам в отсутствие воздуха, но не проявляет коррозионной стойкости к азотной кислоте, аммиаку, влажному сероводороду, хлористому водороду, сухому хлору. [c.25]

    Хлористый водород образуется при плавлении некоторых хлоридов как продукт их гидролиза. Ионы водорода, появляющиеся в расплаве хлоридов при растворении НС1, как и в водных растворах, весьма энергично окисляют металлы. Ионы водорода в солевые расплавы вносятся водой, попадающей из атмосферы, из материала контейнера и остающейся в плохо осушенной соли. На рис. 13.2 приведена диаграмма зависимости скорости коррозии циркония и железа в расплавах щелочных и щелочно-земельных хлоридов от природы атмосферы. Термодинамическая оценка процессов коррозии металлов в кислородсодержащих солях отражена коррозионными диаграммами. Такие диаграммы составлены для различных металлов по отношению к расплавленным щелочам, нитратам, карбонатам, сульфатам. В них представлена зависимость электродных потенциалов металла от парциального давления хлора в системе (для хлоридов) либо О г парциального давления углекислого газа (для карбонатов). Для характеристики окислительно-восстановитель- [c.365]

    Коррозионная стойкость сплавов циркония зависит от состава теплоносителя. Агрессивность среды повышается при наличии в ней фторидов. Поэтому концентрация иона фтора, так же как и хлор-иона, не должна превышать 0,02 мг/кг. Присутствие в среде нелетучих щелочей, особенно гидрата окиси лития, интенсифицирует коррозию сплавов циркония. [c.217]

    Водостойкая кальциевая смазка Содержит ингибиторы коррозии и окисления ф Не содержит хлора ф Обладает отличной прокачиваемостью ф Характеризуется прекрасными противозадирными свойствами во всем диапазоне рабочих температур, высокой стойкостью к вымыванию водой, в том числе горячей, а также слабыми растворами кислот и щелочей. [c.289]

    Задачи электрохимической промышленности весьма многочисленны и разнообразны. Важнейшими йз них являются 1) рафинирование цветных и благородных металлов, 2) получение цветных металлов из руд, 3) получение щелочных, щелочноземельных и других легких металлов, 4) получение металлических сплавов, 5) получение хлора и щелочей, водорода и кислорода, 6) получение неорганических солей и окислителей, 7) декоративные покрытия металлами, 8) защита металлов от коррозии, 9) изготовление металлических копий с неметаллических образцов, 10) изготовление электрических аккумуляторов и других гальванических элементов. [c.10]

    Корродирующее действие. При эксплуатации СОТС наряду с другими показателями важное значение приобретают противокоррозионные свойства. Современные требования к СОТС сводятся к тому, чтобы последние не только не вызвали коррозии обрабатываемых деталей и станка, но и консервировали изделия на межоперационный период. Причиной коррозии могут быть органические кислоты, щелочи, содержащиеся в масляных СОТС, вода и кислоты, образующиеся в результате окисления масляных жидкостей. В ряде случаев причиной коррозии могут быть входящие в состав СОТС химически активные серу-, хлор- и фосфорсодержащие присадки. [c.143]

    Применявшийся прежде многостадийный технологический процесс получения этиленоксида включал в себя водное хло-рированге этилена с последующей обработкой промежуточного продукта щелочью, примем в качестве побочного продукта получалась соляная кислота. Нецелесообразность этого способа с точки зрения техники безопасности определялось тем, что в процессе участвовал токсичный хлор, обращались агрессивные и вызывающие коррозию вещества (хлор, щелочи, кислоты), ш процесс был легкоуправляемым на всех стадиях и это определяло его применение. Другой способ получения эти-лепоксид 1 одностадийным прямым окислением этилена кислородом возд/ха не применялся, поскольку этот процесс неустойчив [c.223]

    Kлинq > 99,9 330 Хлор, щелочь, известь Высокомине-рализован-нЫе стоки Сложная схема, интенсивная коррозия, громадное потребление хлора [c.269]

    В промышленности электрохимический вид коррозии реализуется в тех случаях, когда процессы протекают в водных технологических средах. Например производство неорганических кислот H2SO4, HNO3, H I, процессы получения минеральных удобрений, хлора, щелочей и т.д. [c.67]

    Медь и ее сплг вы для изготовления аппаратуры применяют в виде листов и труб. Медна аппаратура может работать при температуре до 250 °С, при более высоких температурах прочность меди значительно снижается. С понижением температуры механические свойства меди, наоборот, улучшаются, поэтому ее применяют для изготовления аппаратов, работающих при температурах до минус 254 °С. Медь устойчива против атмосферной коррозии, нр при температуре вьпие 180 °С она начинает окисляться. Медь стойка к серной кислоте и щелочам в отсутствие воздуха, но не проявляет коррозирнной стойкости к азотной кислоте, аммиаку, влажному сероводороду, хлористому водороду, сухому хлору. [c.14]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Электролиз широко используют в промышленности для выделения и очистки металлов, получения щелочей, хлора, водорода. Алюминий, магний, натрий, кадмий получают только электролизом. Очистку меди, никеля, свинца проводят целиком электрохимическим методом. Важнэй отраслью применения электролиза является защита e-таллов от коррозии при этом электрохимическим методом на поверхность металлических изделий наносится тонкий слой другого металла (хрома, серебра, ме/.и, никеля, золота), устойчивого к коррозии. [c.268]

    Титан является термодинамически очень активным металлом. Его равновесный электрохимический потенциал равен —1,63 В. Характерной особенностью титана является высокая склонность к пассивации в окислительных и нейтральных средах. Вследствие этого-его стационарный потенциал в ряде сред (например, в морской воде) положительнее потенциалов конструкционных материалов, т. е. для титана не опасна контактная коррозия. Как указывалось в гл. 2, титан обладает высокой стойкостью в растворах, содерл<аших ионы хлора, в окислительных кислотах, в нейтральных средах, в щелочах средних концентраций (до 20%). Титан неустойчив в смеси плавиковой кислоты с азотной, а также в неокисляющих кислотах при повышенной температуре, в расплавленных солях. [c.76]

    До 500-550"С благодаря образованию на поверхности пленки ТЮг коррозионно устойчив на воздухе, в морской воде, влажном хлоре, растворах хлоридов и HNO3, разбавленных растворах H2SO4 и щелочей. Царская водка до 30 С не вызывает коррозии. [c.116]

    Электролизеры с фильтрующей диафрагмой чувствительны к перерывам тока. Помимо изменения протекаемости, выключения тока и перерывы в работе могут приводить к ржавлению стального катода. При последующем включении электролизера продукты коррозии, пропитывающие диафрагму, могут восстанавливаться до металлического железа, проникающего от катода через диафрагму в анодное пространство. Металлизированная диафрагма начинает работать как катод, что приводит к загрязнению хлора водородом и попаданию щелочи в анодноё пространство. Аналогичные процессы протекают при нарушении целостности диафрагмы. При длительных остановках электролизеров катодное пространство для предотвращения коррозии заполняют щелочным раствором. [c.50]

    Хлор из хлорорганических соединений окиси этплена в процесс синтеза связывается щелочью в хлористый натрий, который отлагается в теплообменниках, и для его удаления требуется периоди ческая промывка водой. Избыток щелочи приводит к разложенитс, многих продуктов реакции и, как следствие, к окрашиванию этил-целлозольва-ректификата. Окраска также усиливается за счет коррозии, что вызывает необходимость использовать специальные марки сталей. [c.320]

    На участках, где возможно обеднение электролита щелочью, следует отметить особую нежелательность присутствия ионов хлора, которые кроме увеличения общей скорости растворения металла способствуют возникновению питтинговой (точечной) коррозии, приводящей к более быстрому и глубокому разрушению деталей. При хорошем качестве никелевого покрытия, чистом электролите и высокой культуре эксплуатации электролизеров исключаются условия образования прожогов, что убедительно подтверждается производственным опытом. [c.220]

    Практически титан и его сплавы устойчивы во всех природных средах атмосфере, почве, пресной и морской воде. Титан и особенно некоторые его сплавы имеют также высокую коррозионную стойкость и в ряде окислительных кислых сред, устойчивы в хлоридах, сульфатах, гипохлоридах, азотной кислоте, царской водке, диоксиде хлора, влажном хлоре, во многих органических кислотах и физиологических средах. Отмечена повышенная стойкость титана и его сплавов по отношению к местным видам коррозии — питтингу, межкристаллитной, щелевой коррозии, коррозионной усталости и растрескиванию. Однако титан не стоек во фтористоводородной кислоте и кислых фторидах, а такл е концентрированных горячих щелочах, хотя и устойчив в аммиачных растворах. Он не стоек и в горячих неокислительных кислотах (НС1, H2SO4, Н3РО4, щавелевой, муравьиной, трихлоруксусной), в концентрированном горячем кислом растворе хлористого алюминия (во многих этих средах, как мы увидим дальше, специальные сплавы на основе титана могут иметь высокую стойкость). Титан не стоек в некоторых сильно окислительных средах — дымящей HNO3, сухом хлоре и других безводных галогенах, в жидком или газообразном кислороде, сильно концентрированной перекиси водорода. Реакция титана с этими средами может носить даже взрывной характер. [c.240]

    Отрицательным свойством многих магниевых конструкционных сплавов является их склонность к местной (язвенной) коррозии и коррозионному растрескиванию. Последнее особенно относится к деформированным материалам повышенной прочности в напряженном состоянии. Обычнокоррозионное растрескивание не происходит в растворах, не активных к магнию, как например, в щелочах, фтористоводородной кислоте, фтористых солях, хромовой кислоте и хроматах, при условии отсутствия ионов хлора. Растягивающие напряжения способствуют появлению коррозионного-растрескивания магниевых сплавов повышенной прочности,, особенно если условия таковы, что пассивное состояние сплава может частично нарушаться в присутствии хлор-ионов (например, при небольшом содержании Na l в дистиллированной воде или в хроматных растворах). Чистый магний и его сплавы с меньшей прочностью, как например, сплав МА—1 с 1,5 % Мп, гораздо менее склонны к коррозионному растрескиванию и могут применяться в деформированном состоянии. [c.275]

    Так, окись этилена долгое время получали по многостадийному методу, включающему в себя водное хлорирование этилена с последующей обработкой промежуточного продукта щелочью в качестве побочного продукта образовывалась соляная кислота. Опасность этого метода определялась использованием высокотоксичного хлора, наличием агрессивных веществ (соляной кислоты и щелочи) и связанной с этим коррозией аппаратуры. В настоящее время окись этилена получают методом прямого окисления этилена кислородом воздуха. Этот метод лищен недостатков многостадийного метода. [c.47]


Смотреть страницы где упоминается термин Коррозия хлора и щелоч: [c.67]    [c.31]    [c.317]    [c.8]    [c.156]    [c.50]    [c.113]    [c.48]    [c.65]    [c.756]    [c.119]    [c.102]    [c.20]    [c.426]    [c.305]    [c.189]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.99 , c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия и методы защиты оборудования в производстве хлора и щелочи

Щелочи



© 2024 chem21.info Реклама на сайте