Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение и анализ полисахаридов

    Для составления полной картины химического состава растительного материала, в том числе его полисахаридной части, проводится тщательное фракционирование химических компонентов и исследование фракций по отдельности. В таком случае схема анализа полисахаридов подбирается в зависимости от особенностей растительного материала. Часто перед выделением ГМЦ требуется проведение делигнификации растительного материала. Следует отметить, что исследователи обычно не склонны точно повторять схему и методы анализа других авторов и в процессе исследований модифицируют их с целью получения более точных и убедительных результатов. Однако это затрудняет сравнение результатов, полученных разными авторами, даже для одинаковых видов растений. [c.17]


    ВЫДЕЛЕНИЕ И АНАЛИЗ ПОЛИСАХАРИДОВ [c.147]

    В последние годы появилось много сведений о строении биологических мембран. Важные данные были получены отчасти благодаря биохимическим методам (выделение различных химических соединений из клеточных мембран), рентгеноструктурному анализу, электронному и ядерному магнитному резонансу, спектроскопии, но в основном благодаря применению электронного микроскопа. Клеточные мембраны, такие, как мембрана эритроцита, состоят из примерно равных коли честв липидов и белков. В них присутствует также небольшое количество (несколько процентов) полисахаридов, которые соединяются с полипептидными цепями с образованием гликопротеидов. [c.465]

    В руках у исследователя неизвестный полисахарид (не будем говорить о том, как он был выделен и очищен — это само по себе большая и сложная тема). Белый порошок, растворим в воде, нерастворим в обычных органических растворителях. Вот, собственно, и все, что о нем пока известно. А что нужно узнать Структуру. Иными словами, расставить по местам те десятки тысяч атомов, из которых состоят молекулы связать их одним единственным способом ковалентными связями. В последней фразе задача сформулирована вполне точно, однако решить такую задачу в лоб современной науке не под силу. Нельзя последовательно установить положение одного атома за другим, если общее их число измеряется тысячами или десятками тысяч — это потребовало бы невообразимых затрат труда и времени. Поэтому общая стратегия структурного анализа таких сложных объектов состоит в разборке молекулы на более мелкие блоки, установлении структуры этих блоков (если и они сложны, то также путем предварительного расщепления на еще более мелкие фрагменты) и затем в реконструкции (мысленной) исходной системы. К счастью (и это далеко не случайное везение, а глубоко обоснованный биологический принцип), все биополимеры построены именно по блочному типу и по самой своей природе сравнительно легко допускают такую разборку. Это значит, что в их молекулах чередуются сравнительно легко расщепляемые связи и участки из значительно более прочных связей. Такие участки и есть те самые блоки, [c.48]

    Наиболее детально изучено распределение в слоях клеточной стенки лигнина и целлюлозы. При этом использовались окрашивание реактивами, растворение полисахаридов в кислотах, выделение отдельных слоев клеточной стенки микроманипулятором и их химический анализ, ультрафиолетовая и флуоресцентная микроскопия. [c.319]

    Классификация химических реакций целлюлозы как полимера рассмотрена выше в разделе, посвященном особенностям химических реакций полисахаридов древесины (см. П.3.1). У технической целлюлозы, выделенной из древесины, наибольшее значение из полимераналогичных превращений на практике имеют реакции функциональных групп. К этим реакциям относятся реакции получения сложных и простых эфиров, получения щелочной целлюлозы, а также окисление с превращением спиртовых групп в карбонильные и карбоксильные. Из макромолекулярных реакций наиболее важны реакции деструкции. Реакции сшивания цепей с получением разветвленных привитых сополимеров или сшитых полимеров пока имеют ограниченное применение, главным образом, для улучшения свойств хлопчатобумажных тканей. Реакции концевых групп используются в анализе технических целлюлоз для характеристики их степени деструкции по редуцирующей способности (см. 16.5), а также для предотвращения реакций деполимеризации в щелочной среде. Как и у всех полимеров, у целлюлозы одновременно могут протекать реакции нескольких типов. Так, реакции функциональных групп, как правило, сопровождаются побочными реакциями деструкции. [c.544]


    Первой проблемой при установлении строения полисахаридов, как и при анализе других макромолекулярных соединений, является выделение исследуемого вещества в чистом виде. Понятие чистоты в данном случае не очень четкое из-за наличия микрогетерогенности (минорные изменения внутри одних и тех же частиц вещества). Описаны методы отделения веществ углеводной природы от различных примесей, в том числе от неорганических солей и низкомолекулярных соединений, а также от высокомолекулярных веществ, например белков и лигнинов, однако следует иметь в виду, что каждый полисахарид ведет себя по-своему. [c.216]

    Последовательность мономеров в пептидных и олигосахаридных цепях. Для определения этой последовательности используются два пути— изучение последовательности мономеров в выделенных после глубокой деструкции фрагментах гликопротеинов и установление строения концевых групп гликопротеина. Нужно при этом иметь в виду, что общие методы, используемые при анализе структуры полисахаридов, — метилирование и периодатное окисление (см. гл. 19) в применении к самому гликопротеину могут дать пока крайне ограниченную информацию. Дело в том, что метилирование гликопротеинов, видимо из-за особенностей их вторичной структуры, с большим трудом проходит до конца и чаще всего [c.573]

    Основная трудность анализа древесины обусловлена не большим числом компонентов, которые требуется определить, а существованием очень тесных структурных и химических связей между макромолекулами в клеточной стенке. Трудности избирательного разделения основных компонентов древесины приводят к тому, что на промежуточной ступени разделения в выделенных полисахаридах (холоцеллюлозе) остается часть лигнина и что отделить целлюлозу от полиоз без ее деградации и изменения молекуля зных свойств практически невозможно. [c.20]

    Наиболее точным и быстрым методом определения содержания полиоз без их выделения является полный гидролиз полисахаридов с последующим анализом сахаров (см. 3.2.7). Гидролиз можно проводить с серной кислотой или с трифторуксусной (ТФУ). Гидролиз с ТФУ можно применять для любого исходного материала — древесины, холоцеллюлозы, альфа-целлюлозы, технических цел-люлоз [73]. На рис. 3.3 в качестве примера приведены результаты анализа сахаров из фракций полиоз А, полученных из древесины ели и бука, после гидролиза с ТФУ (концентрацией 2 моль/л). В табл. 3.2 представлены результаты анализа полиоз из нескольких видов древесины и технической целлюлозы. [c.37]

    Для установления строения полисахаридов необходимо охарактеризовать полимерные молекулы в целом с учетом регулярности их построения и определить молекулярную массу. Основным способом выяснения структуры полисахарида является расщепление полимера на олигосахаридные фрагменты, установление строения каждого фрагмента и воссоздание на их основе структуры исходного полимера. Большинство полисахаридов построено из повторяющихся олигосахаридных блоков в этом случае задача сводится к расщеплению полисахаридной цепи, выделению повторяющегося звена и анализу его структуры. [c.467]

    Этот метод [33] анализа полисахаридов дает немного дополнительной информации об их общем строении, однако поскольку при выделении чистых образцов полисахаридов часто добавляют щелочь, необходимо знать происходящие при этом реакции. Самым распространенным типом таких реакций является гидролиз сложноэфирных группировок, используемых для защиты гидроксильных или карбоксильных групп в моносахаридных остатках. Наиболее полную информацию дает постепенное расщепление моносахаридных звеньев, начиная с восстанавливающего конца полисахарида, так называемый пилинг (англ. peeling, слущивание). При анализе разветвленных структур он часто дает больше информации, чем гидролиз ферментами (которые расщепляют молекулу с невосстанавливающего конца), поскольку восстанавливающий конец у молекулы лишь один. При деградации 1,3- и 1,4-связанных моносахаридных звеньев образуются соответствующие сахариновые кислоты (схемы 5, 6), строение которых позволяет определить положение суш,ествовавшей связи. (1 4)-Связанные полисахариды разрушаются не полностью из-за конкурирующей реакции, которая приводит к полисахаридам, устойчивым к действию щелочи (схема 7). Кроме того, скорость расщепления (1 3)-связей может в десять раз превышать скорость расщепления (1->4)-связей. Вследстви(2 этого как только расщепится (1->4)-связь, немедленно распадается, если оно связано (1- -3)-связью, следующее звено, что затрудняет определение последовательности этих связей. [c.222]

    Существенным вкладом в развитие химии углеводов явился предложенный недавно Свитом и др. [290] метод этилирова-ния, который значительно обогатил традиционный подход к структурному изучению полисахаридов методом метилирования. Этими авторами опубликованы данные о временах удерживания большого числа частично этилированных ацетатов полиолов, полученных из целого ряда моносахаридов (ь-арабино-зы, D-ксилозы, L-рамнозы, L-фукозы, D-глюкозы, D-галактозы и D-маннозы), часто встречающихся в полисахаридах клеточных стенок растений. В этом исследовании были использованы четыре колонки для ГЖХ, две из которых применялись ранее (в аналогичных условиях) для изучения соответствующих частично метилированных ацетатов полиолов, полученных из тех же сахаров [287]. Проведенное таким образом прямое сравнение производных этих классов показывает, что многие моноса-харидные компоненты полисахаридов, которые невозможно разделить в виде ацетатов частично метилированных полиолов, можно проанализировать с помощью ГЖХ в форме соответствующих частично этилированных производных, и наоборот. ГЖХ-масс-спектрометрия частично метилированных и частично этилированных ацетатов полиолов, которые образуются в результате гидролиза, восстановления и ацетилирования полностью алкилированных олигосахаридов, выделенных с помощью ВЭЖХ (разд. 7.2.2.2), является составной частью нового важного метода структурного анализа полисахаридов, недавно предложенного Валентой и др. [41]. [c.49]


    При использовании того или иного метода получения холоцеллюлозы следует учитывать, что делигнифицирующие агенты в некоторой степени изменяют свойства полисахаридов. Возможно деполимеризирующее действие хлора, двуокиси хлора и гидроокиси ацетила на макромолекулы полимеров. Например, в работе [20] указывается, что длина цепей 4-0-метилглюкуроноксилана, выделенного из хлоритной холоцеллюлозы древесины белой березы, была на 60% меньше длины цепей этого полимера исходной древесины. Как было обнаружено Хейзером и Йоргенсеном [21], при хлоритной делигнификации осиновой древесины происходит деструкция целлюлозы. При обработке европейского бука хлорной кислотой было установлено [22] наличие в холоцеллюлозе настолько измененного лигнина, что он не мог рассматриваться при анализе как обычный лигнин Классона. Присутствие такого лигнина в холоцеллюлозе и невозможность определения его обычными методами могут привести к ошибочным результатам при вычислении выхода холоцеллюлозы. [c.29]

    В состав гемицеллюлоз подсолнечной лузги входит несколько полисахаридов, различных по составу и структуре молекул. Из гемицеллюлоз лузги подсолнечника Смена были выделены полисахариды 4-0-метилглюкуроноксилан, глюкоманнан и арабогалактановая фракция [206]. Основная масса 4-0-метилглюкуроноксилана легко выделяется экстракцией холоцеллюлозы 107о-ным КОН с последующим осаждением 30%-ным этанолом из нейтрализованного экстракта. При этом часть 4-0-метилглюкуроноксилана остается в растворе и вместе с другими полисахаридами подсолнечной лузги образует трудно разделяющуюся смесь. Для полной характеристики полисахаридного состава гемицеллюлоз применялось фракционированное выделение и разделение их с последующим анализом фракций по углеводному составу гидролизатов. [c.257]

    Сравнение по.тученных результатов с опытами по озонированию целлюлозы позволяет предположить, что реакции сшивки, в основном, должны быть связаны с наличием аминогрупп в хитозане 3 . Имеются данные, что стойкость аминов к действию Оз существенно возрастает при их протонировании кислотами Методами гравиметрии, элементного анализа и потенциометрии выделенных солей кислот с полисахаридом показано, что уже в слабых растворах СН3СООН и H I практически все аминогруппы протонированы (при условии небольшого избытка кислоты по отношению к аминогруппам). [c.498]

    Из четырех основных типов биополимеров — нуклеиновых кислот, полисахаридов, липидов и белков — последние наиболее изучены к настоящему времени, поскольку они доступнее для выделения и анализа. Белки оказались на переднем крае исследования биополимеров более столетия назад, когда Кюне [1] выделил и охарактеризовал фермент трипсин, а Хоппе-Сейлер [2] получил кристаллы гемоглобина. Эти опыты показали, что белки имеют вполне определенную структуру, что, однако, не было общепризнанным до тех пор, пока не удалось непосредственно наблюдать детали их атомного строения с помощью дифракции рентгеновских лучей. [c.8]

    Холоцеллюлоза и водорастворимые полисахариды и полиурониды -гидролизуемая часть древесины. При полном гидролизе полисахариды превращаются в моносахариды. После удаления экстрактивных веществ подходящим растворителем и полного гидролиза углеводной части в остатке получается лигнин. Поэтому в анализе древесины лигнин рассматривают как негидролизуемый остаток. В действительности под действием кислоты (катализатора гидролиза) в лигнине подвергаются деструкции простые эфирные связи и сохраняются, а также образуются новые углерод-утлеродные связи. Выделенный лигнин лишь по количеству примерно соответствует природному лигнину древесины, а по химическому строению значительно от него отличается. Лигнин, вследствие его фенольной природы, окисляется легче, чем полисахариды. После удаления экстрактивных веществ и обработки подходящими окислителями в виде волокнистого продукта остается холоцеллюлоза. Удаление лигнина называют делигнификацией. [c.186]

    Содержание лигнина в древесине и другом растительном сырье определяют преимущественно прямыми способами, основанными на количественном выделении лигнина, после предварительного удаления экстрактивных веществ соответствующей экстракцией, полным гидролизом полисахаридов концентрированными минеральными кислотами с последующим гравиметрическим определением количества лигнинного остатка [30]. Преимущественное применение получил сернокислотный метод. При анализе технических целлюлоз прямые методы используют главным образом в научно-исследовательской практике, а в производственном контроле обычно применяют косвенные методы, основанные на расчете содержания лигнина по расходу окислителя (чаще всего перманганата калия) на окисление остаточного лигнина. К косвенным методам относят также УФ-спектрофотометрический метод (см. 12.7.4). УФ-спектрофотометрию используют и для определения кислоторастворимого лигнина, переходящего в раствор при определении лигнина сернокислот- [c.374]

    Методы выделения и анализа водорастворимых полисахаридов и полиуронидов рассмотрены в главе 11. В водных экстрактах методами химического н хроматографического анализа определяют низкомолекулярные вещества (сахара, гликозиды, таннины, фенолы, соли и т.д.). [c.505]

    Основные резервные полисахариды водорослей включают крахмалоподобные полисахариды и ламинаран. Зеленые, красные и сине-зеленые морские водоросли, а также пресноводные водоросли содержат полисахариды типа крахмала, также состоящие из амилозы и амилопектина. Отсутствие амилозы в некоторых экстрактах может объясняться ее деструкцией при выделении в кислотных или щелочных растворах. Б отличие от крахмалов растений крахмалы водорослей дают менее вязкие растворы и обладают более низкой способностью связывать иод, что указывает на меньший размер их молекул. Наличие молекул меньшего размера продемонстрировано также с помощью рентгеноструктурного анализа, который показал, что гранулы этих крахмалов имеют более простую организацию, но все еще обладают характеристиками растительных крахмалов. Крахмалы водорослей более чувствительны к действию амилолитических ферментов. Средняя длина их цепи составляет 10—19 структурных единиц в их молекулах обнаружено небольшое число а-(1- 3)-связей [125]. [c.248]

    Содержание полиоз в древесине можно определять различными методами выделением всех или части полиоз и косвенными методами без их выделения. В анализе древесины общепринятая методика выделения и определения полиоз заключается в последовательной обработке хлоритной холоцеллюлозы 5 %-ным и 24 %-ным КОН [2491. Щелочные растворы полиоз нейтрализуют уксусной кислотой и обрабатывают большим количеством этанола. Осаждающиеся фракции называют полиозами А (из 5 %-ного КОН) и полиозами В (из 24 %-ного КОН). После поправки на золу сумма этих двух фракций соответствует содержанию полиоз, но не равна точно количеству всех полиоз в образце древесины. Это обусловлено частично их потерей, главным образом пентоза-нов, при делигнификации (см. 3.2.6), неполным осаждением из спиртовых растворов кроме того, в альфа-целлюлозе остается существенная примесь полиоз (см. 3.2.7) [201 ]. Для определения содержания полиоз в древесине хвойных пород предложена модификация этого метода с использованием 5 %-ного и 17,5 %-ного NaOH [691. Описан комбинированный метод выделения из древесины полисахаридов по Уайзу [249] с дополнительным определением содержания пентозанов, уроновых кислот и ацетильных групп непосредственно в древесине после экстрагирования водой [202]. В принципе, для определения содержания полиоз можно использовать любую методику их фракционного выделения при условии, что сумма фракций характеризует общее количество полиоз или, по крайней мере, преобладающую часть. [c.37]

    Первоначально лигнины характеризовали с помощью элементного анализа и определения метоксильных групп. В дополнение к этому стали определять примесь нелигнинных компонентов — золы и полисахаридов. В дальнейшем появились способы определения функциональных групп (фенольных и алифатических гидро--ксильных, карбонильных и карбоксильных) для характеристики изменений в строении лигнина, обусловленных методом выделения или химической обработкой [94, 156, 190]. Реакции деградации или конденсации (см. 10, 11) можно также обнаружить с помощью определения средней молекулярной массы либо, что точнее, распределения по молекулярной массе или размеру молекул [1031. [c.121]

    Анализ выделенного из щелока сульфатной варки целлюлозы ЛУК показал, что он содержит главным образом полисахарид глюкозного ряда, однако при более продолжительном процессе варки в ЛУК накапливаются галактоза и манноза [44]. Исключается возможность присутствия в ЛУК гликозидных связей или С—С-связсй, включающих концевые группы углеводов. Предполагается, что во время сульфатной варки может образоваться связь между углеводами и лигнином. Используя модельные соединения, удалось показать возможность образования эфирной связи между лигнином и углеводами в процессе щелочной варки [58]. [c.175]

    Выделение и характеристика небольших фрагментов типа ди- и олигосахаридов после частичного кислотного гидролиза полисахаридов составляют метод первичного структурного анализа, известного как связевый анализ. Идентификация дисахаридов, образующихся в результате кислотной реверсии, может привести к ошибочным заключениям. Поскольку их образование контролируется термодинамически, они не могут быть разрушены Продолжительным кислотным гидролизом. Этот критерий можнО f пoльзoвaть при их первичной идентификации. [c.290]

    Ранее упоминалось, что применение лишь хроматографических методов для анализа свободных сахаров в гидролизатах полисахаридов. недостаточно, необходимы препаративное выделение компонентов и их идентификация. То же относится и к анализу смесей метилированных сахаров. При препаративном разделении метилированных моносахаридов также пользуются хроматографическими методами, используя в качестве сорбентов целлюлозу, уголь и силикагель. Завершают очистку препаративной хроматографией на бумаге (картон, блоки из бумаги). [c.69]


Смотреть страницы где упоминается термин Выделение и анализ полисахаридов: [c.190]    [c.247]    [c.28]    [c.353]    [c.230]    [c.274]    [c.365]    [c.275]    [c.228]    [c.257]    [c.511]    [c.514]    [c.26]    [c.195]    [c.95]    [c.116]    [c.118]    [c.130]    [c.139]    [c.353]    [c.124]    [c.342]   
Смотреть главы в:

Руководство к практическим занятиям по микробиологии Изд.3 -> Выделение и анализ полисахаридов




ПОИСК





Смотрите так же термины и статьи:

Выделение полисахаридов

Полисахариды

Полисахариды, анализ



© 2025 chem21.info Реклама на сайте