Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метанол, обмен

    Изучена кинетика обмена ионов щелочных металлов (Na, Li, К) в воде и 60%-ном метаноле на катионообменнике КУ-2 [116]. Скорость ионного обмена хлоридов из 1 М растворов уменьшается в ряду К+ > Na+ > Li+ в среде 60%-ного метанола обмен лития замедляется, а обмен натрия и калия ускоряется по сравнению с водными растворами. Ниже приведены константы равновесия обмена  [c.43]


    Аммиак и амины могут быть удалены перед ректификацией путем обработки метанола двухосновными органическими кислотами — винной, адипиновой, глутаровой, янтарной. Однако более простым и эффективным способом удаления соединений азота является очистка продукта на ионитах . Обычно применяют сильнокислотные катиониты, например типа КУ-2, КВС, вофатит и др. Ионитный фильтр может быть установлен на различных стадиях процесса ректификации на линии Подачи метанола-сырца, на линии водного метанола после перманганатной очистки или на. выходе ме-танола-ректификата из колонны основной ректификации. В любом варианте метанол очищается от аммиака и аминов, частично поглощаются альдегиды, карбонилы железа, присутствующие металлы. Однако эффективность очистки будет зависеть от стадии, на которой устанавливают ионитный фильтр. Дело в том, что при фильтровании метанола-сырца и водного метанола обменная емкость катионита используется не только ло прямому назначению. Одновременно с поглощением аммиака и аминов поглощается большое. количество альдегидов и, вероятно, диметилового эфира. Поглощение эфира и альдегидов, а также примесей металлов резко снижает рабочую емкость катионита, что влечет за собой необходимость частой регенерации фильтра. Аналогичная картина наблюдается при фильтровании водного метанола. [c.122]

    Другое важное применение масс-спектрометрии, основанное на использовании изотопов, состоит в исследовании обменных реакций с участием соединений, содержащих нерадиоактивные изотопы. Для определения скорости обмена изучают во времени содержание изотопа в продукте превращения меченого исходного вещества. Продукт или исходное соединение можно разложить до газообразного вещества, содержащего метку, и из масс-спектра получить изотопное отношение. Эти вещества можно также исследовать непосредственно, и из анализа изменений в спектре различных фрагментов можно установить местонахождение и количество метки. Определяя, какие пики в спектре изменяются при внедрении изотопа, можно выявить части молекулы, участвующие в обмене. С помощью метки и масс-спектрального анализа было показано, что эфирный кислород в продукте реакции метанола с бензойной кислотой принадлежит метанолу  [c.324]


    Понижение температуры замедляет протонный обмен, что хорошо видно на примере метанола. Согласно правилам первого порядка, спектр ПМР метанола должен представлять собой дублет и квартет. В действительности при обычной температуре спектр H OH состоит из двух синглетов, т. е. спин-спиновое взаимодействие (для метанола J = 5 Гц) не проявляется вследствие быстрого протонного обмена между молекулами спирта. Если частота обмена будет меньше, чем 2J => 10 Гц, то можно наблюдать спин-спиновое расщепление. Охлаждая метанол, можно добиться расщепления синглета и появления квартета в результате замедления обменного процесса. Так, при температуре —40 °С в спектре ПМР метанола наблюдаются квартет (ОН) и дублет ( H ). [c.122]

    Этим требованиям удовлетворяют вода, аммиак (безводный), метанол этанол и ацетон в этих растворителях возможен ионный обмен. Растворители можно разделить на две группы протолитические (НдО и ЫНд) и апро-тонные. Поскольку многие электролиты растворимы в этих растворителях и при этом частично диссоциируют, можно использовать указанные растворители для проведения ионного обмена. Ионный обмен в неводных растворах в основном происходит по законам ионного обмена в водных средах, но некоторые свойства ионитов изменяются (набухание, обменная емкость). [c.377]

    Описанные ситуации могут дополнительно осложняться, если протоны групп N—Н участвуют в обменных процессах через водородные связи. Во многих случаях, как отмечалось в разд. 1,3 гл. I, это также ведет к уширению линий. Более того, обмен является еще одним механизмом, который, как в случае с метанолом (см. в начале разд. I этой главы), может привести к исчезновению констант спин-спинового взаимодействия N — —>Н или >Н—>Н, [c.298]

Рис. 61. Неселективный 2М обменный протонный спектр метанола в области СЩ-группы (/= 100 МГц) Рис. 61. Неселективный 2М <a href="/info/356503">обменный протонный спектр</a> метанола в области СЩ-группы (/= 100 МГц)
    Рис. 62. 2М обменный спектр МСВ в области СН группы. метанола [c.129]

    Подвижная фаза всегда водная, обычно забуференная, содержит некоторое, очень малое (= 0,1—1,0 мМ), количество металла-комплексообразователя. Известную пользу иногда приносит применение смесей воды с такими органическими растворителями, как метанол или ацетонитрил, в качестве модификаторов. На линейном полиакриламиде, содержащем аминокислотные фрагменты и Си(П) и сорбированном на силикагеле, лигандный обмен также проходит медленно [114]. [c.146]

    Авторы работы [78] провели измерения коэффициентов селективности при обмене натрия в цеолите NaA на цезий и калия в цеолите Ка на цезий и натрий в неводных (метанол, этанол и этилен- [c.601]

    Ири переходе к рубидиевой форме цеолита, т. е. о увеличением радиуса обменного катиона, активность и селективность катализатора возрастают. Так, па KNaX (при 425 °С, объемной скорости ч и до.[ярном соотношении метанол углеводород, равном 20) степень нревраше[ ия а-метилнафталина составляет 48,3, а на RbNaX в этих же условиях — 94 %. В продуктах реакции увеличивается содержание а-винилнафтадипа и селективность процесса на углеводород достигает 94—97 %. Возрастает также целевая конверсия [c.330]

    Методика определения нитрата калия. Полученную после титрования смесь подвергают ионному обмену на катионите СДВ-3 в Н-форме. Для этого раствор пропускают через катионит малыми порциями со скоростью 2 капли в 1 сек. После окончания реакции обмена катионит промывают малыми порциями метанола, заканчивают промывание, пропустив через колонку 50 мл метилового спирта. Полученный раствор, содержащий эквивалентное свободной кислоте и НОз-ионам ко личество кислоты, оттитровывают стандартным метаноловым раствором едкого кали. Титрование проводят в тех же условиях и на той же установке, как и при определении свободной кислоты. Кривую титровання строят в координатах Е (мв) — V (мл), она характеризуется одним скачком титрования. [c.454]

    Реакции хлористого метила. Реакционная способность хлористого метила, как и других галоидалкилов, определяется активностью содержащегося в нем хлора. Сущность реакции хлористого метила состоит в обмене атома хлора на радикалы других соединений, причем атом хлора соединяется с атомом металла или водорода, а метильная группа — с остальной частью молекулы реагента. Насыщенный водяным паром хлористый метил гидролизуется с образованием метанола и хлористого водорода. Щелочные гидроокиси металлов и известковое молоко ускоряют гидролиз хлористого метила. При хранении промышленного жидкого хлористого метила, содержащего только следы влаги (0,05% и выше), возможна серьезная коррозия 133]. [c.367]


    С хорошо раств. в воде, не раств. в сп., метаноле. В белки пе включается, Играет важную роль в обмене. Биосинтез — из орпитииа и карбамоил фосфата. Участвует в цикле мочевины. [c.688]

    ЩЕЛОЧИ, гидроксиды щел. и щел.-зем. металлов. Твердые в-ва. Гидроксиды щел. металлов (едкие Щ.) хорошо раств. в воде, щел.-зем. металлов — плохо едкие Щ. также раств. в этаноле и метаноле. Сильные основания (особенно едкие Щ.), поглощают СОз и НгО из воздуха. Сила оснований и р-римость в воде в каждой группе периодич. сист. возрастает с увеличением радиуса катиона. Водные р-ры едких Щ. разрушают стекло, расплавы — фарфор, РЬ. Получ. электролиз хлоридов щел. металлов обменная р-ция между р-ром соли 1цел. металла и гидроксидом щел.-зем. металла действие воды на оксиды щел.-зем. металлов. См., напр., Калия гидроксид, Кальция гидроксид, Магния гидроксид, Натрия гидроксид. [c.691]

    Конечно же, прежде всего ваше вещество должно растворяться в выбранном растворителе. Но растворимость не обязательно должна быть очень высокой, особенно если вы собираетесь регистрировать прогонный спектр. В этом случае 1 мг вещества в 0,4 мл растворителя вполне достаточно для получения хорошего спектра на приборе со средним и сильным полем. Растворитель может повлиять на получаемые результаты еще несколькими путями. При наблюдении протонов и углерода сигналы растворителя могут закрывать некоторые области спектра. Вязкость растворителя влияет на разрешение в спектре, особенно при работе с протонами. Некоторые растворители, например вода и метанол, содержат способные к обмену атомы водорода, что не позволяет наблюдать сигналы обменивающихся протонов в изучаемом веществе. Если планируются температурные эксперименты, то необходимо учесть температуры кипения и замерзания растворителей, равно как и возможные температурные изменения растворимости исследуемого вещества. Растворители ароматической природы, такие, как бензол и пиридин, могут вызывать большие изменения химических сдвигов в спектре растворенного вещества по сравнению со спектрами, полученными при использовании неароматических растворителей. Интедсивность н ширина сигнала дейтерня от растворителя могут оказывать влияние на результаты некоторых экспериментов, таких, как, например, разностная спектроскопия. И наконец, цены иа дейтерироваиные растворители различаются очень сильно, что может оказаться важным ( ктором при выборе методик для ежедневного приготовления и измерения спектров большого числа образцов. От тщательного учета всех перечисленных факторов может во многом зависеть успех всего эксперимента. [c.55]

    АМИНОЛИЗ (от амины и греч. lysis - разложение, распад), обменная р-ция между в-вом и первичным или вторичным амином. Путем А. можно заменить в орг. соед. на аминогруппу галоген (напр., в алкил- и арилгалогенидах, галоген-ангидридах к-т), гидроксил (в спиртах и фенолах) А. подвергаются также неорг. соединения, напр, гидриды щелочных металлов, нек-рые оксиды и галогениды. Р-ция применяется, напр., для пром. получения диметиланилина из анилина и метанола, алканоламинов из анилина и метанола, из хлоргидринов и аминов. См. также Окислительный аммонолиз. [c.139]

    Для синтеза производных выош.их спиртов, растворимость в которых как фтористых солей, так и алкоголятов сравнительно низка, реакцию удобнее проводить в среде метанола. Образующийся на первой стадии метилат калия, рубидИя или цезия в дальнейшем подвергается обменной реакции с высшим спиртом. [c.46]

    Нами разработан способ получения о-бром-З-индолилфос-фата натрия обменной реакцией между бариевой солью 5-бром-З-инфолилфосфата и натриевой формой катионообменной смолы типа КРС или Дауэкс. Продукт очищают пере-осаждением из метанола этилацетатом иЛи диэтиловым эфиром. [c.36]

    Все без исключения обменные процессы, которые мы обсуждали, были внутримолекулярными. В заключительном разделе этой главы мы кратко рассмотрим несколько явлений обмена, межмолекулярных по своей природе. Эти явления включают почти все реакции протонного переноса, подобные той, что уже упоминалась при нашем обсуждении спектра метанола. Во многих случаях основу для интерпретации дает коллапс спиновых мультиплетов. В табл. VIII. 3 представлены результаты нескольких исследований спиртов, аминов и других соединений близкой природы. В отличие от ранее рассмотренных реакций первого порядка все без исключения протекающие в этих системах процессы имеют второй порядок. [c.294]

    Таким образом, полученные 2М обменные спектры МСВ отражают лищь чисто химический обменный процесс в метаноле. [c.130]

    Крам и сотр. [13] установили, что катализируемый метилатом обмен водорода на дейтерий у атома углерода в а-положении к группам СЫ, СОГ Нг или ШОК протекает в ДМСО в 10 раз скорее, чем в метаноле. Такое увеличение скорости реакции оьшо объяснено [c.21]

    Неводные ионогенные растворители также могут быть применены при хроматографии на силикагеле. В работе [134] изучено влияние ионной силы, pH элюента и основности сорбатов на величины удерживания. Роль этих факторов указывает на то, что основным процессом, определяющим сорбцию, является катионный обмен с силанольными группами поверхности. Подвижные фазы состояли из метанола с добавками хлорной кислоты, перхлората аммония, гидроксида калия. Сопоставление хроматограмм, полученных на различных силикагелях (Пар-тисил-5. Гиперсил, Силоид, Сферисорб), свидетельствует о том, что абсолютные величины удерживания на последних трех сорбентах воспроизводятся хорощо. Партисил удерживает изученные лекарственные соединения слабее, хотя селективность сорбента по отнощению к ним примерно такая же, как у других материалов. В отличие от нормально-фазовой и обращенно-фазовой хроматографии, селективность разделения несколько улучшается при малом удерживании. На рис. 4.35 представлена [c.159]

    При растворении органического соединения с активными атомами водорода в алифатическом спирте между этими соединениями происходит обмен активными атомами водорода, причем в соответствующей реакции почти мгновенно устанавливается равновесие [7, 8]. Аналогичным образом добавление к алифатическому спирту тритиевой воды приводит к равновесному распределению этого изотопа между водой и гидроксильными группами спирта. Следует отметить, однако, что подобного обмена с участием атомов водорода, связанных с атомами углерода в метаноле, этаноле и гр т-бутаноле, не наблюдалось [9]. После удаления воды подходящим поглотителем или если с самого начала использовать воду лишь в следовых количествах и с высокой удельной радиоактивностью, остается меченый спирт (радиореагент). [c.247]

    Использовав смесь фенол — метанол — аммиак (90 10 1), с помощью хроматографии на бумаге можно разделить диазепам, оксазепам и хлордиазепоксид (2821, а также метаболиты последнего 1283]. Рассматривая перспективы развития методов бумажной хроматографии применительно к бенздиазепинам, Клиффорд и Смит 2651 указывают на перспективность бумаги, пропитанной катионно-обменными смолами и силикагелем. Они приводят методику разделения на такой бумаге хлордиазепоксида, диазепама, нитразепама, оксазепама и медазепама, а также указывают их значения У / в системе растворителей хлороформ—этанол (49 1). [c.222]

    В певодных растворителях (метанол или этанол) цеолит NaA практически не обменивался на двухвалентные щелочноземельные катионы. В тех же условиях обмен между двухва.лентными ионами (Sr + и Са +) протекал настолько медленно, что скорость его невозможно было определить [71]. [c.596]

    В работе [80] рассматривается зависимость ионного обмена в цеолите А на щелочные ионы (литий, натрий и т. д.) в смешанных растворителях (система вода — метанол) от диэлектрической проницаемости раствора. Добавление метанола в раствор повышает кажущуюся константу равновесия для всех катионов, кроме лития. В случае лития константа равновесия снижается с увеличением концентрации метанола, что может быть связано с высокой энергией гидратации ионов лития. Значения исправленных коэффициентов селективности линейно зависят от содержания катиона в обменнике в соответствии с уравнением Килланда — Баррера. Стандартная свободная энергия обмена во всех случаях — величина положительная, как и при обмене натрия в цеолите NaA на другие щелочные катионы в водном растворе. Это позволило сделать вывод, что цеолит А более избирателен по отношению к натрию, "чем к другим щелочным катионам, вне зависимости от того, проводится ли обмен в воде или в смешанном растворителе [80]. [c.602]


Смотреть страницы где упоминается термин Метанол, обмен: [c.134]    [c.56]    [c.18]    [c.220]    [c.286]    [c.37]    [c.7]    [c.202]    [c.256]    [c.344]    [c.39]    [c.255]    [c.297]    [c.689]    [c.121]    [c.146]    [c.154]    [c.588]    [c.547]    [c.7]    [c.380]    [c.307]    [c.87]   
Биохимия растений (1968) -- [ c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование кинетики обмена протонов между тиофенолом и метанолом методом ЯМР

Магния ион обмен метанола с растворителем

Обмен дейтерия с метанолом над платиновым катализатором Адамса. Влияние некоторых нитросоединений на скорость этого обмена (Э. Мак-Даниел, X. Смит)

Пространственные влияния орто-заместителей в фенолах на их ассоциацию и скорость обмена протонов с метанолом



© 2025 chem21.info Реклама на сайте