Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот, физико-химические свойств

    Ванадий, ниобий и тантал — серые металлы. Чистые металлы ковки примеси кислорода, водорода, азота и т. п. сильно ухудшают их пластичность и увеличивают хрупкость. Некоторые константы, характеризующие физико-химические свойства ванадия,ниобия и тантала  [c.286]

    Алюминий. Простое вещество. Физико-химические свойства, амфотерность. Взаимодействие с кислородом, серой, азотом, углеродом, водой в нейтральной и щелочной среде, азотной кислотой. Алюминий как сильный восстановитель. Алюминотермия. Получение алюминия в промыщленности. [c.176]


    Абсорбция оксидов азота. Физико-химические свойства процесса. Диоксид азота взаимодействует с водой по схеме [c.418]

    Физико-химические свойства сульфата аммония. Химически чистый сульфат аммоння (МН4)2504 представляет собой бесцветные кристаллы ромбической формы плотностью 1,769 т/м содержащие 21,2% азота. Физико-химические свойства сульфата аммония представлены ниже  [c.228]

    Рассчитать содержание азота в модифицированном полиакрилонитриле, если 18% нитрильных фупп гидролизовано до карбоксильных. Привести химическую структуру этого сополимера. Какими физико-химическими свойствами он будет обладать  [c.276]

    В качестве окислителя ракетных топлив обычно применяется 98—99%-ная азотная кислота, которая в иностранной литературе получила название белой дымящей азотной кислоты . Применяемая азотная кислота содержит различное количество четырехокиси азота. Предложено использовать в качестве окислителей системы, состоящие из окислов азота. Так, сообщалось об испытании окислителя, состоящего из тетранитрометана и четырехокиси азота. Физико-химические свойства окислителей на основе азотной кислоты, окислов азота и тетранитрометана приводятся в табл. 174. [c.386]

    Для многих нефтей наблюдается взаимозависимость между содержанием серы (Сз), азота (См ), асфальтенов и смол (С са) тяжелых металлов (ванадия и никеля Су+м1) и рядом физико-химических свойств — плотностью, вязкостью и молекулярной массой (рис. 1-16) [25] . [c.38]

    Высокая концентрация азота и хорошие физико-химические свойства, малая слеживаемость, низкие расходы на хранение и транспортирование сделали карбамид основным азотным удобрением. Этим. объясняется быстрый рост объема производства этого продукта [94—96]. [c.233]

    Условия, в которых нефть находится в залежи, резко отличны от поверхностных, где обычно и изучаются ее физико-химические свойства. В пластовых условиях в нефти содержатся значительные количества растворенных газов. Основными компонентами попутных газов являются метан, этан, пропан и азот. Первые три из них являются наиболее энергичными осадителями асфальтенов из нефти. [c.34]

    По физико-химическим свойствам получаемая ири перегонке сланцев смола отличается от природной нефти большей вязкостью, плотностью, высоким содержанием азота и кислорода. Свойства смолы в определенной мере зависят и от способа ее получения (табл. 3.13) [123]. Так как первичная сланцевая смола имеет высокую температуру застывания, обычно превышающую 20 °С, для получения из нее моторных топлив требуется предварительная переработка смолы, например коксование пли гидрирование. Смола, не прошедшая предварительную обработку, транспортируется до перерабатывающих предприятий ио специальным трубопроводам с обогревом. Определенную трудность при гидроочистке смолы может представлять наличие в ней твердых взвешенных частиц, которые должны удаляться центрифугированием или отгонкой тяжелого остатка. Гидроочистку смолы можно проводить без ее предварительного фракционирования с применением технологии гидрообессеривания нефтяных остатков. При этом для полного удаления азота потребуется от 260 до 350 м водорода на 1 м смолы (в зависимости от ее качества). Однако более целесообразно гидроочистку проводить до содержания азота в смоле л 0,15% (масс.), а затем после фракционирования подвергать гидроочистке бензин, средние дистилляты и газойль раздельно. В таком варианте общий расход водорода на очистку 1 м смолы составит в среднем 280 м  [c.112]


    Традиционные базовые масла относят к группе 1 их получают в процессах разделения сырья (перегонка, селективная очистка, депарафинизация растворителями). Более современные поточные схемы включают гидроочистку жесткого режима и гидрокрекинг (рис. 4.2) и используются для получения масел группы П. Такие масла содержат значительно меньшее количество аренов, серы и азота, по сравнению с группой 1 (табл. 4.2). Физико-химические свойства масел групп I—IV представлены в табл. 4.3 [245]. [c.161]

    В одинаковых прозрачных бесцветных сосудах находятся газы хлороводород, диоксид азота, кислород, хлор, диоксид углерода. Предложите способы их идентификации на основе их простейших физико-химических свойств (окраска, запах, горючесть и т. п.). [c.11]

    Сердечная мышца по содержанию ряда химических соединений занимает промежуточное положение между скелетной мускулатурой и гладкими мышцами. Так, общее содержание белкового азота в скелетных мышцах кролика составляет 30—31 мг/г, а в гладкой мускулатуре (миометрий)—до 20,3 мг/г. В сердечной мышце и особенно в гладких мышцах значительно меньше миофибриллярных белков, чем в скелетной мышце. Общее содержание миофибриллярных белков в гладкой мышечной ткани желудка примерно в 2 раза ниже, чем в скелетных мышцах. Концентрация белков стромы в гладких мышцах и миокарде выше, чем в скелетной мускулатуре. Известно, что миозин, тропомиозин и тропонин сердечной мышцы и гладкой мускулатуры заметно отличаются по своим физико-химическим свойствам от соответствующих белков скелетной мускулатуры. Отмечены определенные особенности и во фракциях саркоплазматических белков. Саркоплазма гладкой мускулатуры и миокарда в процентном отношении содержит больше миоальбумина, чем саркоплазма скелетной мускулатуры. [c.652]

    Структуры в нефти образуются не только из высокомолекулярных углеводородов, но и из асфальтенов. Асфальтены, как и смолы, являются гетероорганическими соединениями. В их состав, кроме углерода и водорода, входят сера, кислород, азот, металлы. Молекулы этих компонентов нефти построены из конденсированных ароматических, циклопарафиновых и гетероциклических систем. Конденсированные циклические системы соединены мостиками из алифатических углеводородов. Асфальтены отличаются от смол более высокой конденсированностью циклических структур. Это обусловливает их более высокую, чем у смол, молекулярную массу, порой намного превышающую 1000, существенное отличие физико-химических свойств. В литературе есть указания на то, что асфальтены являются продуктом уплотнения и конденсации смол [2]. Если смолы хорошо растворяются не только в ароматических, но и в жидких предельных углеводородах, то асфальтены в последних нерастворимы, на чем и основаны процессы отделения их от смол. [c.83]

    При использовании газов (например, воздух, азот), физико-химические свойства которых отличаются от физико-химических свойств передавливаемых продуктов, образуются абгазы передавливания, т. е. газообразные смеси продукта с газом, использованным для передавливания. Не всегда технически возможно и экономически целесообразно улавливать продукт из абгазов или использовать абгазы. Поэтому абгазы сжиженных углеводородных [c.78]

    В сточных водах имеются растворимые газы сероводород, углекислый газ, кислород, азот и др., общее содержание которых может достигать 0,09 mVm воды. Растворенные в воде газы влияют на физико-химические свойства воды. Кислые газы оказывают влияние на величину pH, которая может понижаться от 6,9 до 4,0. При транспортировке и хранении воды, которая содержит Нг5 и СОг, pH увеличивается вследствие выделения сероводорода и углекислого газа в железосодержащих водах pH уменьшается в результате окисления и гидролиза солей железа. [c.149]

    ДОМ, который может появиться при попадании влаги и образовании в аппаратах плавиковой и соляной кислот. Учитывая интенсивность возможных источников инертных , состав их предполагается однородным, а физико-химические свойства соответствующими азоту. [c.170]

    ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ОКСИДОВ АЗОТА И АЗОТНОЙ КИСЛОТЫ [c.12]

    Изучение физико-химических свойств и электронных спектров поглощения показало, что в этих соединениях моноэтаноламин координирован только атомом азота все полученные комплексы имеют цис-конфигурацию. [c.167]

    В гл. 2 рассматриваются физико-химические свойства соединений азота, даются сведения о механизме образования окиси азота в процессе сгорания, а также методы расчета термодинамического равновесия и кинетики реакций дальнейших преобразований этих окислов по газовому тракту и в атмосфере. [c.7]

    Тяжесть и глубина действия различных вредных веществ на организм человека и животных зависит от вида вещества и его физико-химических свойств. Свойства некоторых токсичных веществ приведены в табл. 6.3. Разделяют вредные вещества на ядовитые и неядовитые. К ядовитым относятся вещества, вызывающие любое ухудшение состояния здоровья и снижение работоспособности. К неядовитым относятся вещества, которые при прямом воздействии на организм не оказывают видимого ухудшения состояния здоровья, но при длительном контакте действуют раздражающе на дыхательные пути, глаза, кожу. Например, газообразные вещества (метан, азот) при больших концентрациях снижают содержание кислорода, что отрицательно сказывается на органах дыхания человека. Вредные вещества могут находиться в газообразном, жидком и твердом состояниях. [c.367]


    В первом томе справочника под общей редакцией Е. Я. Мельникова приведены физико-химические свойства газообразных и жидких веществ, применяемых и получаемых на предприятиях азотной промышленности. Описаны различные методы получения и очистки технологических газов (азото-водородной смеси, синтез-газа). Рассмотрены физикохимические основы процессов синтеза аммиака и метанола, промышленные схемы и принципы автоматизации их производства даны некоторые методы технологических расчетов, приведены характеристики катализаторов, описана применяемая аппаратура. [c.4]

    В табл. 1,3—1,9 приведены некоторые физико-химические свойства оксида азота (IV), необходимые для практических расчетов. [c.17]

    Сталь — сплав железа с углеродом, с примесями марганца, кремния, серы, фосфора. Обычная углеродистая С. содержит 0,05—1,5 % С, 0,1—1 % Мп, до 0,4 % 31, до 0,08 % 5, до 0,18 % Р. При большем содержании примесей или при добавке других специальных примесей С. называется легированной. Легирующие элементы Сг, N1, Мп, Си, , Мо, V, Со, Т1, Nb, А1, 2г, Та. Легированные С. обладают высокими механическими и физико-химическими свойствами. Из них изготавливают детали машин, инструменты, резцы, штампы и др. Нержавеющие стали, содержащие до 12 % хрома, устойчивы против коррозии в атмосфере, в кислотах, щелочах, растворах солей. Добавление в С. хрома, кремния и алюминия делает ее жаропрочной, а насыщение поверхностного слоя стали азотом (азотирование) резко увеличивает износоустойчивость стальных изделий. С. обычно изготовляют из чугуна путем частичного удаления из него углерода окислением этот способ получил наибольшее распространение в современной металлургии. Другой путь получения С. состоит в восстановлении железа в железной руде и введении в него требуемого количества углерода и других примесей. [c.126]

    Учитывая, что одной из основных задач фундаментальных исследований проблемы увеличения нефтеотдачи пластов является поиск принципиально новых методов и химреагентов для извлечения нефти из недр, нами разработан новый метод извлечения остаточной нефти, основанный на принципе взаимодействйя комплексообразующих химреагентов с полярными нефтяными компонентами. Метод основан на воздействии химреагентов на металло-порфирины нефти, что приводит к разрушению асфальтосмолистых структур. Установлено, что при воздействии поли-функциональных реагентов на нефть на границе нефть - вода происходят обменные процессы между ассоциатами нефти и химическими добавками, что приводит к разрушению структуры, снижению вязкости нефти и к повышению нефтеотдачи пласта.Наиболее эффективными в этом плане являются азот-, фосфор- и кислородсодержащие реагенты, растворимые в воде. В работе представлены результаты комплексного изучения механизма взаимодействия относительно недорогих комплексооб разующих реагентов с нефтями различных месторождений, приводящие к изменению их физико-химических свойств. На основе исследований разработаны [c.4]

    Физические и химические свойства. Ванадий химически относительно активен. Некоторые его физико-химические свойства см. в табл. 1. Чистый металл, не содержащий нитрида и карбида, пластичен. Его можно легко протягивать в проволоку и прокатывать в листы и тонкую фольгу при обычной температуре. Металл, содержащий нитриды или карбиды, тверд и хрупок. В виде порошка при нагревании энергично соединяется с кислородом, серой и хлором. Компактный металл при обычной температуре даже во влажном воздухе остается блестящим. При нагревании в воздухе и в кислороде сначала темнеет, изменяя цвет, покрывается окислами различной степени окисления и,наконец, сгорает в УгОз. При нагревании в атмосфере водорода поглощает его, а при нагревании в атмосфере азота образует нитриды. В избытке хлора сгорает в УСЦ. Изучено взаимодействие ванадия с большим числом металлов и неметаллов. Данные о характере взаимодействия в соответствующих двойных и тройных системах с участием ванадия приведены в монографиях [5, 13]. [c.6]

    Вторая часть книги, двадцать две ее главы (т. 2 и 3 в русском переводе), содержит систематическое описание строения молекул, молекулярных, олигомерных или бесконечно-полимер-ных ионов и кристаллов соединений разных химических классов. Очередность изложения материала можно назвать классической это именно тот порядок, который принят в большинстве учебников по неорганической химии. Просмотрев оглавление, читатель убедится, что автор движется по группам периодической таблицы Д. И. Менделеева последовательно рассматриваются соединения с участием водорода, галогенов, кислорода, серы и других халькогенов, азота, фосфора и их аналогов по группе и т. д. Такой порядок расположения материала делает монографию, с одной стороны, очень удобным и нужным дополнением к учебникам по неорганической химии (особенно полезным для аспирантов и соискателей степени кандидата наук), с другой стороны, хорошим источником сведений о структурных основах для научных работников — специалистов в той или иной области неорганической химии. Каждая глава (или группа глав) книги может служить фундаментом для разработки углубленных концепций о связи между реакционной способностью, строением и физико-химическими свойствами соответствующих классов соединений. [c.6]

    По многим физико-химическим свойствам литий обнаруживает большее сходство с магнием—элементом, находящимся в Периодической системе по диагонали от него, чем со своим непосредственным химическим аналогом — натрием. Так, литий при сгорании на воздухе образует оксид Li20, как и магний -MgO литий, в отличие от других щелочных металлов легко соединяется с азотом, давая нитрид LiaN, как и магний — Mga-Nj некоторые соли лития и магния — фториды, карбонаты, ортофосфаты, а также гидроксиды малорастворимы в воде гидроксиды лития и магния уже при умеренном нагревании (400—450 °С) разлагаются на соответствующий оксид и иоду, тогда как остальные щелочи в этих условиях термически устойчивы и образуют ионные расплавы. [c.196]

    Комм. Какие частицы образуются в водном растворе в результате протолиза (П1 и П2) Приведите значения констант протолиза. Охарактеризуйте окислительно-восстановительные свойства гидразина и гидроксиламина в кислотной и щелочной среде. Почему в результате окисления водородных соединений азота, как правило, образуется диазот Дайте сравнительную характеристику строения и физико-химических свойств водородных соединений азота. [c.161]

    Так как в смолистоасфальтовых соединениях концентрируется главная часть всех гетероэлементов, а плотность нефти тоже в большой степени связана с ее смолистостью, то наличие корреляций между содержанием азота и отмеченными выше физико-химическими свойствами нефтей становится не только понятным, но и необходимым. [c.123]

    Позднее ВНИИгазом были проведены исследования по изучению физико-химических свойств смесей аминов (ДЭА, МДЭА, ДЭА + МДЭА) с диметиловыми эфирами полиэтилен-гликолей в различных соотношениях, на основании чего было рекомендовано использование нового отечественного абсорбента Экосорб , по свойствам идентичного дорогостоящему импортному Укарсолу . Экосорб разработан на основе компонентов, выпускаемых отечественной промышленностью (АО Синтез г. Дзержинск и ПО Азот г. Кемерово) и отличается значительно более низкой стоимостью. [c.59]

    К термостойким каучукам относятся в первую очередь диметил-полисилоксановые каучуки (силастики) с температурой стеклования ниже 120° и эластичные до 200°. Они не стареют при нагревании и хранении. Их бензостойкость растет от введения полярных групп или атомов фтора. Вероятно, еще более стойки при высоких температурах (до 500°) различные неорганические эластомеры, получаемые на основе соединений азота, фосфора, бора и других элементов, но этот вопрос еще не разработан. Из чисто органических сополимеров наиболее термостабильными являются, вероятно, описанные выше лактопрены, сохраняющие основные физико-химические свойства неизменными после длительных выдерживаний в маслах при 170—200°. [c.634]

    По многим физико-химическим свойствам литий обнаруживает большее сходство с магнием — элементом, находящимся в Периодической системе по диагонали от него, чем со своим непосредственным химическим аналогом — натрием. Литий и магний легко реагируют с азотом и дают нитриды Ь1зК и MgзN2. Поэтому, при сгорании на воздухе литий и магний образуют оксиды и нитриды. Некоторые соли лития и магния (фториды, карбонаты, ортофосфаты), а также их гидроксиды малорастворимы в воде. Гидроксиды [c.115]

    По данным элементного состава, остаточные нефти отличаются от нативных и отбензиненных более высокой молекулярной массой, значительным содержанием гетероатомных соединений, более высокой степенью водородной ненасыщенности. Содержание кислородорганических соединений в остаточной нефти на порядок выше, что указывает на ее высокую окисленность. Повышенное содержание элементов серы, азота, кислорода и золы указывает на значительное количество в остаточной нефти соединений сложной структуры и металлов [71]. Это хорошо согласуется с работами [71-73], где говорится, что при заводнении легкие компоненты нефти вымываются водой, при этом происходит увеличение плотности, вязкости нефти за счет процессов окисления и хроматографического эффекта на породе. А с ростом содержания смол, асфальте-нов и нафтеновых кислот увеличивается вероятность прилипания капель нефти к породе, что приводит к появлению аномалий вязкости [74]. В связи с вышеизложенным при разработке новых технологий повышения нефтеизвлечения важное значение приобретает знание химического состава и физико-химических свойств остаточных нефтей разрабатываемых месторождений. [c.59]

    Таким образом, исследование и регулирование устойчивости нефтяных дисперсных систем является важным условием разработки научных основ новой технологии и целенаправленного поиска комплексообразующих реагентов и композиций с ПАВ. Полученные результаты позволяют сделать вывод о том, что, поскольку атом ванадия в ванадилпорфиринах нефтей является координационным центром в молекулах асфальтенов, образование экстракомплексов в результате обработки нефтей азот-, кислород-и фосфорсодержащими ПФР способствует разрушению асфальто-смолистых структур. Это, в свою очередь, приводит к изменению физико-химических свойств нефтей, снижению их вязкости, увеличению степени дисперсности и уменьшению содержания асфальтенов, что представляет большой интерес при разработке новых технологий добычи [122 ], транспорта и переработки [123] высоковязких нефтей, богатых ванадилпорфиринами. [c.152]

    Хромомарганцевые стали, разработанные Институтом металлургии АН ГССР, по сравнению с хромоникелевым сплавом (Х18Н9Т) содержат хрома на 3—5% меньше. Для стабилизации аустенитной структуры в сплавах этого типа вводится азот в количестве до 0,4%. Хромомарганцевые сплавы по своим физико-химическим свойствам приближаются к хромоникелевым, а по некоторым другим даже превосходят их. Химический состав и механические свойства хромомарганцевых сплавов приведены в табл. IV. 1, IV. 2. [c.61]

    Известно большое количество реагирующих систем, в которых в диапазоне температур, представляюш,ем интерес для ядерной энергетики [298], протекают химические реакции, сопровождающиеся изменением числа молей. Наиболее изученной из этих систем в настоящее время является диссоциирующая четырехокись азота [29, 417]. Физико-химические свойства N204 позволяют осуществить как газовые, так и конденсационные циклы [296—298,416]. [c.4]

    Физико-химические свойства оксида азота (IV), представляющего собой равновесную смесь NO2 и N2O4, приведены ииже  [c.14]

    Исследованы ИК спектры большого ряда алициклических эпоксидов, относящихся к гетерофункциональным соединениям и содержащих в качестве функциональных групп или структурных элементов молекул конденсированный эпоксидный цикл, оксирановое кольцо в составе спироциклической структуры, дополнительную алифатическую эпоксигруппу, этиленовую связь, простые эфирные и сложноэфирные группы, 1, 3-диоксановые фрагменты, циклопентеновые, цик-логексеновые, фурановые, тетрагидропирановые и ароматические кольца, серу (в виде функциональной группы —80,—), азот (в виде вторичной и третичной аминофуппы), кремний и бор. С целью проведения более точной интерпретации ИК спектров эпоксидов и установления достоверных спектрально-структурных корреляций изучены также ИК спектры структурных аналогов и промежуточных соединений. Отобранный ряд алициклических эпоксисоединений составляет новый класс технических эпоксидов, обладающих ценными физико-химическими свойствами. [c.74]

    Функционирование H2II в составе белков и ферментов определяется физико-химическими свойствами среды и доступностью реакционного центра простетической группы в ферменте. Реакционные центры, действующего порфирин-белкового комплекса, надежно экранированы. Первую экранирующую сферу составляют атомы азота умеренно жесткого макроциклического окружения, а также экстралиганды. Вторая экранирующая сфера включает элементы полипептидных цепей, образующих полости, размер которых делает доступными для реакционного центра НгП лишь определенные типы частиц (Н2О, О2, O,H N)[10]. [c.357]


Смотреть страницы где упоминается термин Азот, физико-химические свойств: [c.237]    [c.146]    [c.98]    [c.421]    [c.6]    [c.15]    [c.310]    [c.67]   
Теоретические основы образования тумана при конденсации пара Издание 3 (1972) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Азот молекулярный физико-химические свойств

Азот, свойства

Окислы азота физико-химические и токсические свойства

Окись азота физико-химические свойства

Пятиокись азота физико-химические и термодинамические свойства

Физико-химические основы образования окислов азота при сжигании топлива и их свойства

Физико-химические основы производства серной кислоты нитрозным способом Окислы азота и их свойства

Физико-химические свойства двуокиси азота

Физико-химические свойства закиси азота

Физико-химические свойства трехокиси азота

Четырехокись азота физико-химические свойства



© 2024 chem21.info Реклама на сайте