Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ион потенциалобразующий

    Различают пептизацию адсорбционную, диссолюционную и промыванием осадка. При адсорбционной пептизации к осадку добавляют ПАВ или готовый электролит-пептизатор, неиндифферентные ионы которого избирательно адсорбируются на поверхности частиц потенциалобразующего слоя. При диссолюционной пептизации пептизатор образуется в ходе химической реакции между молекулами поверхностных слоев частиц осадка и добавленным реагентом. [c.188]


    Образование двойного слоя ионов приводит к появлению определенных электрических потенциалов на границе раздела твердой и жидкой фаз. Ионы первого слоя (внутренней обкладки), фиксированные на твердой поверхности, придают этой поверхности свой знак заряда и создают на ней так называемый поверхностный или ((-потенциал (д -потенциал). Знак ф-потенциала совпадает со знаком заряда потенциалобразующих ионов. Величина ф-потенциала пропорциональна числу зарядов этих ионов на поверхности частиц. Если двойной слой образуется в результате адсорбции ионов или диссоциации твердого вещества, то электрический потенциал на поверхности частиц определяется исключительно концентрацией или активностью этих ионов в растворе, потому что частица действует как обратимый электрод относительно этих ионов. В этом случае ф-потенциал можно выразить уравнением Нернста  [c.398]

    Если рассматривать график с точки зрения влияния разведения золя чистым растворителем, то на участке I кривой возрастание -потенциала также можно объяснить переходом части противоионов из адсорбционного слоя в диффузный вследствие понижения общей концентрации электролитов во всем объеме раствора участок // кривой, соответствующий чрезмерному разбавлению раствора, обусловлен дальнейшим развитием процесса десорбции, затрагивающего внутреннюю часть двойного слоя. Выход потенциалобразующих ионов в раствор приводит к уменьшению числа зарядов на поверхности частиц и понижению как ф-, так и -потенциала. [c.400]

    Таким образом, коллоидная частица имеет отрицательный заряд (в данном случае ионы СГ являются потенциалобразующими), последние вместе с противоионами входят в адсорбционный слой. [c.40]

    В конической колбе емкостью 200 мл нагревают до кипения 100 мл дистиллированной воды. В кипящую воду приливают по каплям около 20 мл раствора хлорного железа (концентрация 2%). После нескольких минут кипячения в результате гидролиза получается красно-коричневый золь гидроокиси железа. Гидрат окиси железа и потенциалобразующий ион ГеО получаются из следующих реакций  [c.47]

    Коагуляция осложняется обратным процессом — процессом пептизации или дезагрегации, т. е. переходом коагулята в золь. Этот процесс совершается самопроизвольно без затраты энергии на увеличение поверхности раздела фаз. Пептизация более вероятна в свежеосажденных системах и зависит от лиофильности осажденного золя. Чем выше лиофильность, тем более возможна дезагрегация. С течением времени в коагуляте протекают процессы взаимодействия частиц, приводящие к уменьшению дисперсности и поверхностной энергии. В этом случае коагуляция принимает необратимый характер, и пептизация в системе не происходит. Пептизация может наступить при введении в систему электролита, содержащего потенциалобразующие ионы. Например, амфотерные коагуляты типа А1(0Н)з пептизируются при добавлении щелочей или кислот в небольших количествах, но достаточных для увеличения заряда на частице. Иногда процесс пептизации коагулята может быть вызван при отмывании осадка от электролита (концентрационная коагуляция). Несмотря на кажущееся различие обоих путей (отмывка от электролита и добавление электролита), механизм пептизации в обоих случаях заключается в увеличении потенциальной энергии отталкивания, приводящем к дезагрегации частиц. [c.91]


    Противоионами могут быть любые по природе ионы, но обязательно другого знака заряда, чем потенциалобразующие. [c.339]

    В состоянии равновесия твердая фаза окажется заряженной отрицательно за счет адсорбированных ионов Г, жидкая — положительно за счет избыточных катионов Ионы будут удерживаться вблизи отрицательно заряженной поверхности кристаллов электрическими силами притяжения к адсорбированным ионам Таким образом, возникает двойной электрический слой из ионов 1 и К . Слой ионов 1 , находящийся на поверхности твердой фазы и обусловливающий возникновение потенциала на границе раздела, называют внутренней обкладкой ДЭС. Ионы I в данном случае являются потенциалобразующими ионами. [c.344]

    Выше (см. 20.5) были рассмотрены пути образования двойного электрического слоя (ДЭС) на границе раздела коллоидных частиц и дисперсионной среды. ДЭС возникает на границе твердое тело — жидкость либо в результате преимущественной адсорбции ионов одного знака на твердой поверхности, либо в процессе диссоциации твердого вещества с поверхности. Независимо от механизма образования ДЭС непременным условием его возникновения является достаточно высокая плотность расположения зарядов в слое потенциалобразующих ионов. Электростатические силы притяжения такого слоя способствуют возникновению второго, компенсирующего, слоя из ионов противоположного знака. [c.398]

    Согласно современным представлениям, двойной электрический слой — это образующийся на границе двух фаз тонкий поверхностный слой из пространственно разделенных электрических заря.шв противоположного знака (потенциалобразующих ионов и противоионов). ДЭС следует рассматривать как единую систему, в целом нейтральную, так как сумма зарядов противоионов равна заряду твердой поверхности (внутренней обкладки ДЭС). В образовании ДЭС могут участвовать не только ионы, но и дипольные молекулы. Внешняя обкладка ДЭС (слой противоионов) состоит из двух частей плотной и диффузной. Теория диффузной части разработана и обоснована более полно, плотной части — менее полно. Общая теория ДЭС пока отсутствует. Исторически в ходе изучения ДЭС было предложено несколько его моделей, которым отвечает различный характер кривых падения потенциала и расположения противоионов. [c.403]

    На образующихся микрокристаллах золота адсорбируются ионы аурата, являющиеся потенциалобразующими ионами. Противоионами служат ионы К" ". [c.412]

    Адсорбционная теория коагуляции объясняла снижение -потенциала до критического значения уменьшением числа зарядов потенциалобразующих ионов вследствие нейтрализации их адсорбирующимися ионами-коагуляторами. Однако дальнейшие исследования показали, что эта теория имеет ограниченное применение, так как далеко не всегда наблюдались эквивалентность адсорбции разных электролитов и совпадение изотерм адсорбции различных ионов. Кроме того, во многих случаях коагуляция связана с изменениями лишь в диффузном слое, а заряд потенциалобразующих ионов остается постоянным. [c.426]

    Если е — заряд единицы поверхности металла (плотность заряда), а Нд + является единственным потенциалобразующим ионом, то [c.211]

    Потенциалобразующая реакция выражается уравнением [c.13]

    Вторичная обменная адсорбция происходит во внешней обкладке двойного электрического слоя, возникающего на границе кри-сталл-раствор. На адсорбцию микроколичества радионуклида в данном случае оказывают конкурентное влияние все ионы, присутствующие в растворе и имеющие знак заряда, противоположный заряду поверхности. Величина вторичной обменной адсорбции ионов зависит от заряда и величины поверхности кристаллического тела, от величины работы адсорбции, валентности ионов, ионной силы раствора, концентрации потенциалобразующих ионов в растворе. [c.322]

    Хингидронный электрод. Это обратимый окислительно-восстановительный электрод, состоящий из органических соединений. Потенциалобразующая реакция имеет вид [c.14]

    Таким образом, на частицах воз никает два скачка потенциала. Один потенциал, больший по величине, возникает между потенциалобразующими ионами и всеми противоионами. Этот скачок потенциала (между твердой фазой и жидкостью) называется термодинамическим потенциалом и обычно обозначается буквой ф. Другой потенциал возникает на границе между диффузным и адсорбционными слоями и обозначается I. Этот потенциал определяет скорость перемещения фаз и часто называется электрокинетическим потенциалом. -Потенциалу приписывается знак заряда твердой поверхности, он меньше ф-потенциала. [c.231]

    Здесь молекулы Agi (обозначим их количество через п) составят так называемое ядро мицеллы. Для стабилизации золя берут небольшой избыток электролита, содержащего ион, общий с ионами, входящими в ядро (в данном случае, например, KI). Согласно правилу Фаянса, на поверхности ядра адсорбируются ионы иода (в количестве т), которые сообщают ядру отрицательный заряд. Это — потенциалобразующие ионы. [c.3]


    Потенциалобразующий процесс здесь описывается ур авнением [c.86]

    В дисперсных системах, где потенциалобразующими ионами являются ионы Н+ и ОН , изоэлектрическому состоянию соответствует определенное значение pH среды, которое называется изоэлектриче ской точкой. Изоэлектрическая точка рНиэт зависит от кислотно-основных свойств вещества дисперсной фазы. Для большинства гидрозолей гидроксидов (кремния, титана, железа, алюминия и др.) pH иэт определяется соотношением констант равновесия реакций отш.енления и нрисоедине-ния протона Н+  [c.100]

    Теория двойного электрического слоя получила развитие в работах Фрумкина и Дерягина. Согласно их представлениям, внутреннему слою ионов двойного электрического слоя, получивших название потенциалобразующих, плотно примыкает некоторая часть противоположно заряженных ионов (рис. 50, а), называемых против о ионам и. Эта часть противоионов передвигается вместе с частицей и образует слой толщиной 6", называемый адсорбционным. На рис. 50, а граница между такой частицей и средой обозначена пунктиром. Остальные противоио-ны располагаются в дисперсионной среде, где они распределены, как правило, диффузно. [c.166]

    ЧТО плотность тока электролиза существенно меньше тока обмена потенциалобразующей реакции. Для НКЭ достаточно нло щадь поверхности 2—3 см . [c.294]

    Ацидиметрическое титрование можно также проводить, используя вместо водородного гладкий платиновый электрод в качестве индикаторного. Здесь потенциалобразующей является реакция 40Н — "02+2Н20- -4е и уравнение Нернста имеет вид [c.314]

    Особенно чувствителен к этим факторам и-потенциал. Зависимость -потенциала золя от температуры и разведения V можно выразить графически (рис. 25.2). На участке / кривой в области умеренного повышения температуры ц-потенциал растет. Это можно объяснить тем, что с повышением температуры увеличивается кинетическая энергия противоионов в мицеллах золя. Преодолевая электростатические и ван-дер-ваальсовы силы притяжения, часть противоионов переходит из адсорбционного в диффузный слой. Увеличивается толщина последнего, а вместе с этим и С-потенциал устойчивость золя несколько возрастает. Второй участок кривой характеризуется понижением -потенциала. Это можно истолковать следующим образом при дальнейшем повышении температуры процессы десорбции ионов захватывают уже более глубокие области двойного электрического слоя начинается отрыв ионов от внутренней обкладки ДЭС, т. е. часть потенциалобразующих ионов отрывается от твердой поверхности и переходит в раствор. Это приводит к понижению ф-по-теициала и, как следствие, к уменьшению и С-потенциала. Устойчивость золя также понижается. [c.400]

    Введение в коллоидные растворы индифферентных солей сопровождается двумя явлениями 1) ионным обменом между противоионами ДЭС и ионами добавленного электролита 2) сжатием диффузной атмосферы вокруг поверхности частиц. В качестве примера рассмотрим процессы, происходящие при добавлении раствора NaNOa к золю Agi с отрицательно заряженными частицами. В таком золе противоионами могут служить, например, катионы К . Между введенными ионами Na+ и противоионами ДЭС — катионами К" — происходит ионный обмен. Взаимодействие ионов и Na+ с ионами 1 , являющимися потенциалобразующими, примерно одинаково, поэтому их взаимный обмен подчиняется в основном закону действующих масс. Диффузный слой содержит смесь тех и других ионов. Однако здесь проявляется и другая сторона действия электролита. Добавка электролита приводит к повышению ионной силы раствора. Согласно теории Дебая—Хюккеля, с повышением ионной силы раствора уменьщается толщина ионной атмосферы и происходит сжатие диффузной части ДЭС. При этом некоторое число противоионов переходит из диффузного слоя в адсорбционный. Следствием такого распределения противоионов является снижение величины -потенциала (рис. 25.3, /), в то время как величина и знак ф-потенциала поверхности частиц остаются практически постоянными. Влияние электролитов усиливается, если в их составе имеются многозарядные ионы ( u" +, Са" +, АГ +, Th + ). Многозарядные катионы более активно взаимодействуют с отрицательными зарядами (в данном случае с ионами 1 ). Вследствие этого такие ионы вытесняют ионы К" " из Диффузного и адсорбционного слоев в раствор, становясь на их место. При этом падение -потенциала происходит быстрее, чем при действии однозарядных ионов (рис. 25.3,2). При добавлении электролитов с ионами, имеющими заряд 3, 4 и более, может происходить не только снижение -потенциала до нулевого значения, но и перемена знака заряда (рис. 25.3, [c.401]

    Такое чередование зон устойчивого и неустойчивого состояний золей называют неправильными рядами, так как в этом случае нельзя сделать однозначного заключения о том, что с увеличением концентрации электролита стабильность золя снижается. Рассмотрим влияние неиндифферентных электролитов на величину и знак -no-тенциала. Как уже отмечалось, неиндифферентными являются электролиты, в составе которых есть ионы, способные избирательно адсорбироваться в соответствии с правилом Панета—Фаянса на твердой поверхности и служить потенциалобразующими ионами. [c.436]

    При добавлении к такому же золю Agi нитрата серебра неиндифферентным ионом будет ион Ag +. Поскольку потенциалобразующими в мицелле золя являются ионы 1 , при введении в раствор ионов Ag+ создаются благоприятные условия для взаимодействия указанных ионов с образованием труднорастворимого Agi. В результате связывания потенциалобразующих ионов происходят нейтрализация отрицательных зарядов поверхности частицы и постепенное снижение ф-потенцпала. [c.437]

    Строение двойного электрического слоя. Основываясь на экспериментальных данных, полученных Квинке при изучении электрокинетических явлений, Г. Гельмгольц предложил первую модель двойного электрического слоя. Согласно воззрениям Гельмгольца, в дальнейшем развитым М. Смолуховским и Ж. Перреном, двойной электрический слой рассматривается как заряженный плоский конденсатор. На поверхности находится слой ионов, называемых потенциалобразующими, а на некотором расстоянии от нее в жидкой фазе находятся, удерживаемые силой электростатического притяжения, ионы противоположного знака, называемые противоионами. Модель Квинке — Гельмгольца предполагает, что расстояние между плотным слоем противоионов и слоем потенциалопределяющих ионов повсюду одинаково. По условию электронейтральности удельные поверхностные заряды (поверхностные плотности зарядов) обенх составляюш,их частей двойного электрического слоя должны быть равны по абсолютной величине д+=д . Скачок потенциала для модели Квинке — Гельмгольца рассчитывается по известной формуле для плоского конденсатора 9=СД >1, в которой С—емкость плоского конденсатора на единицу площади, причем С = еео- - (еео — [c.87]

    Следующий за потенциалобразующими ионами слой создается из ионов противоположного знака, которые называются противоионами. В данном случае противо-ио,нами будут ионы калия К+. Часть противоионов находится в непосредственной близости от ядра и входит в состав плотного адсорбционного слоя. Все другие про-тивоио ны располагаются дальше от ядра и образуют диффузный (размытый, рыхлый) слой противоионов. Диффузный слой подвижен и способен перемещаться относительно твердой частицы с адсорбционным слоем. Толщина диффузного слоя изменяется с изменением концентрации и зарядов ионов, имеющих противоположный знак по отношению к ядру. Противоионы этих двух слоев находятся в состоянии подвижного равновесия. [c.229]

    В случае адсорбционной коагуляции, связанной с уменьшением фгпотенциала, иногда до ИЭТ, необходимо повысить поверхностный заряд и потенциал частицы путем добавления электролита, содержащего потенциалобразующие ионы. Так, амфо-терные коагуляты типа А1(0Н)з иептизируются прн добавлении щелочей или кислот в количествах небольших (с с ), но достаточных для увеличения i 3i. Осадки типа Agi пептизируют посредством добавления умеренных количеств AgNOs ил и КЬ Несмотря на кажущееся различие обоих путей (отмывка от электролита и добавление электролита) механизм пептизации является, по существу, единым и заключается в увеличении энергии [c.263]

    При рассмотрении строения мицеллы было показано, что при взаимодействии лиофобных коллоидов с электролитами на поверхности ядра адсорбируются определенные ионы из раствора. Ядро с адсорбированными на нем ионами того или иного знака взаимодействует с окружающим раствором. При этом благодаря электростатическому притяжению ионы, обладающие знаком, противоположным по отношению к потенциалопределяю-щим ионам, стремятся расположиться к ним как можно ближе. В результате этого образуются два близко расположенных слоя ионов один на поверхности (потенциалобразующие ионы) и другой в растворе (противоионы). Такая система называется двойным электрическим слоем Гельмгольца (рис. 122). Следует помнить, что в целом эта система электроней-тральна. В представлении Гельмгольца двойной электрический слой по добен плоскому конденсатору, внутренняя обкладка которого находится в твердой фазе, а внешняя — расположена в жидкости параллельно твердой поверхности ядра на расстоянии молекулярного порядка. Общий термодинамический по- [c.319]

    Потенциалобразующие ионы и часть пр.отивоионов, прочно связанная электростатическими силами с ядром, образуют адсорбционный слой (на рис. 1 он ограничен прямой ВЕ), а свободные противоионы — диффузный слой. Адсорбционный и диффузный слои составляют двойной электрический слой (его толщина изображена отрезком ВС). [c.12]

    Всякий источник электрической энергии — элемент и потребитель энергии — ванна, как это следует из выражения (У.13), характеризуются разностью электродных потенциалов и внутренним сопротивлением. Поэтому процессы зарядки и разрядки аккумулятора нельзя считать обратимыми чем больший ток проходит через электрохимическую систему, тем больше теряется напряжение. Э. д. с. элемента и напряжение на клеммах электролизера зависят также от материала электродов и от состава и концентрации потенциалобразующих ионов в растворе. Например, не только абсолютная величина, но и знак э. д. с. цепи, составленной из меди (положительного полюса) и цинка (отрицательного полюса), изменяется на обратный, если в системе (V. ) медный электрод погрузить вместо раствора сернокислой меди в раствор цианистой меди. Таким образом, напряжение и электродвижущая сила электрохимических систем существенно зависят от величины накладываемого или отбираемого тока, а также от состава и концентрации реагирующих на границе фаз электрод — электролит веп1,естБ. [c.145]

    Для каждой потенциалобразующей реакции характерно только одно значение стандартного потенциала, что и отличает этот показатель от реальных потенциа- [c.167]

    Первичная адсорбция, при которой адсорбируемые ионы входят в состав поверхности осадка, подразделяется на первичную, потенциа-лобразующую и первичную обменную адсорбцию. В потенциалобра-зующей адсорбции принимают участие только те ионы, которые могут входить в кристаллическую решетку осадка, т. е. одноименные или изоморфные ионы. Для радионуклидов, находящихся в крайне разбавленном состоянии, этот вид адсорбции играет незначительную роль, поскольку радионуклиды не могут обеспечить создания достаточного избытка одного из ионов на поверхности кристаллов, обусловливающих появление на поверхности заряда и скачки потенциала. Избыток того или иного иона микрокомпонента на поверхности наблюдается как в силу неодинакового средства собственных катионов и анионов к поверхности кристалла, так и из-за избытка одного из ионов в растворе. Потенциалобразующая адсорбция косвенно имеет большое значение для адсорбции радионуклидов, поскольку ее величина определяет общую емкость по отношению к вторичной обменной адсорбции. [c.321]


Смотреть страницы где упоминается термин Ион потенциалобразующий: [c.78]    [c.172]    [c.339]    [c.341]    [c.397]    [c.398]    [c.399]    [c.402]    [c.409]    [c.418]    [c.14]    [c.43]    [c.103]    [c.172]    [c.502]   
Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.16 ]

Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте