Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабильные радикалы ингибитора

    Таким образом, ингибитор играет двойственную роль в процессах ингибированного окисления. С одной стороны, он обрывает кинетические цепи окисления, с другой — образующиеся при этом акте гидроперекись и стабильный радикал ингибитора зарождают цепи за счет вырожденного разветвления и передачи цепи радикалом. Это означает, что используемые в настоящее время ингибиторы, работающие в основном именно таким образом, являются далеко не идеальными. Нужны, по-видимому, поиски новых классов ингибиторов, работающих по-иному, более эффективному механизму. [c.171]


    Хиноны могут образоваться при взаимодействии стабильного радикала ингибитора с молекулой кислорода. Так, при окислении 2,6-ди-трет-бутил-4-метилфенола в метаноле в присутствии солей [c.130]

    Обрыв цепей происходит вследствие образования по реакции (7) стабильного свободного радикала ингибитора In, сравнительно мало активного и не способного к продолжению цепи окисления, но в то же время легко взаимодействующего по реакции (8) с активными радикалами R или ROO и обрывающего цепи окисления. Причем константа скорости реакции (8) на несколько порядков выше, чем для реакции (7) [ 7=10 - -- 105 л/(моль-с), Й8 107+10 л/(моль-с)]. Очевидно, что радикалы In являются более активными ингибиторами окисления по сравнению с исходной молекулой ингибитора. Высокая эффективность ингибирующего действия свободных радикалов при окислении топлив и масел обусловлена также участием радикалов In в реакциях переноса электрона и в реакциях тушения возбужденных состояний углеводородов. [c.40]

    Взаимодействие нитроксилов со свободными радикалами. Способность нитроксилов взаимодействовать с активными свободными радикалами с образованием эфиров гидроксиламинов приводит к обрыву радикальных цепных процессов, что позволяет использовать нитроксилы в качестве надежных ингибиторов полимеризации и термоокислительной деструкции органических полимеров. Эфиры гидроксиламинов при взаимодействии с перок-сильными радикалами, образующимися при окислении полимеров, вероятно, регенерируют исходный нитроксил, поэтому один стабильный радикал способен оборвать несколько кинетических цепей окисления. [c.529]

    Реакция антиокислителя (ингибитора) с пероксидным радикалом осуществляется через отрыв подвижного атома водорода окси- или аминогруппы ингибитора с образованием гидропероксида и стабильного свободного радикала ингибитора  [c.65]

    Ингибиторы полимеризации замедляют или останавливают полимеризацию, взаимодействуя с радикалами инициатора или растущей цепи. Свойствами ингибиторов обладают различные соединения — хиноны, гидрохиноны, ароматические нитропроизводные, ароматические амины и др. В тех случаях, когда ингибитор является донором водорода (здесь сокращенно обозначено 1пН), для осуществления ингибирования необходимо, чтобы стабильность радикала (1п ), образующегося при передаче водорода, была достаточно велика высокая стабильность делает невозможным его присоединение к мономеру. Если присоединение происходит и при этом начинается рост новой цепи, то вместо ингибирования будет происходить передача цепи. В идеальном случае ингибирование должно заканчиваться рекомбинацией радикалов 1п- друг с другом или с радикалами инициатора, приводящей к образованию инертных продуктов. [c.518]


    Г. Химические методы. Обсуждавшийся выше метод зеркал является частным случаем более общего метода определения свободных радикалов, основанного на большой химической реакционноспособности радикалов. Так, если К представляет собой радикал, а — некое стабильное химическое соединение, способное реагировать с К, то введение в кинетическую систему приведет к изменению первоначальных концентраций и образованию новых продуктов. С этой точки зрения вещество выступает как ингибитор первоначальной реакции. Идеальный ингибитор реагировал бы с радикалами полностью и тотчас же, как только они образуются, и давал бы полную л несомненную информацию о первых стадиях ценной реакции на основе изучения новых образующихся продуктов. [c.97]

    Можно привести простой иллюстративный пример, указывающий путь, которым клеточный эффект можно охарактеризовать количественно. Предположим, что исследуется фотолиз в присутствие ингибитора 8, который может реагировать с атомами I с образованием относительно инертного радикала 81, последний в свою очередь не реагирует с 1г, но может реагировать с атомом I с образованием стабильного 812- Кинетическая схема может быть представлена в виде [c.466]

    Реакция ингибитора с пероксидными радикалами может осуществляться через образование малостабильного комплекса ингибитора с радикалом при взаимодействии последнего с я-электронами противоокислителя (механизм прилипания ). Образовавшийся радикал-комплекс реагирует еще с одним пер-оксидным радикалом, давая стабильные продукты, т. е. цепь обрывается [105]  [c.80]

    Первичная элементарная реакция с образованием первичного радикала из молекул сырья называется реакцией инициирования цепи. Реакции превращения одних радикалов в другие, при которых расходуется сырье, называются реакциями продолжения пени. Реакции, при которых радикалы гибнут, превращаясь в стабильные молекулы в результате рекомбинации, диспропорционирования или образования малоактивного радикала, называются реакциями обрыва цепи. Обрыв цепи может произойти также при добавлении или присутствии в сырье веществ - ингибиторов, которые приводят к замене активных радикалов на малоактивные, не способные к продолжению цепи. [c.353]

    Кинетика и механизм акта инициирования изучены методом ингибирования. В 1<ачестве ингибитора использовали иминоксильный стабильный свободный радикал. [c.274]

    Установлен и другой механизм взаимодействия ингибитора с перекисными радикалами — образование малоустойчивого комплекса ингибитора с радикалом при взаимодействии последнего с л-электро-нами ингибитора (механизм прилипания ) [24, 30, 38]. Такой радикал-комплекс реагирует затем еще с одним перекисным радикалом, давая стабильные продукты  [c.146]

    Таким образом, действие ингибиторов состоит в обрыве реакционной цепи окисления по реакциям (1) и (2). Образующийся радикал ингибитора малоактивен н не способен оторвать водород от молекулы полимера. Оп дезактивируется сам или дезактивирует полимерные радикалы по реакциям (3) — (5) Антиоксиданты второй группы (сульфиды тиофосфаты, ди-тиокарбаматы) разлагают гилропсроксиды с образованием стабильных молекулярных соединений. [c.225]

    Образующиеся из ингибитора радикалы In часто достаточно активны в реакциях отрыва и могут катализировать реакции такого типа. Катализ парой InH - In , где InH - дифениламин, был недавно установлен на примере реакции стабильного радикала 2, 4, 6-три-/я/7е1я-бутилфеноксила с гидропероксидом. Феноксил медленно реагирует с кумилгидропероксидом [к = = 0,16 л/(моль-с) при 290 К в I4]. Введение в систему дифениламина ускоряет реакцию, причем амин в этой системе при определенных условиях не расходуется. Катализ обусловлен [c.460]

    Расчет таких величин, как скорость реакции, средний молекулярный вес образовавшегося полимера и распределение по молекулярным весам, основывается на четырех типах указанных выше реакций, а именно инициирование, рост, обрыв и передача. Такие, на первый взгляд различные, явления, как разветвление цепи (в структурном смысле), обрыв на мономере и ингибирование, в действительности не являются дополнительными типами реакций, а представляют собой следствия реакции передачи цепи. Разветвление цепи, например, может происходить при передаче цепи от радикала к полимерной молекуле с последующими реакциями роста и обрыва (уравнение 1.VIII) обрыв на мономере является результатом передачи цепи через мономер с образованием очень стабильного радикала, который не способен участвовать в реакции роста с такой же скоростью, как исходный полимерный радикал (см. стр. 66) ингибирование происходит при передаче цепи к молекуле ингибитора с образованием радикала, имеющего крайне низкую реакционную способность (см. гл, 6). [c.21]

    Остановимся на особенностях, которые вносит в кинетику полимеризации присутствие ингибитора. В простейшем случае можно ограничиться представлением о том, что молекула ингибитора г, реагируя с активными центрами, превращается в стабильный радикал Z , не способный к реакции роста. Дальнейшие превращения таких радикалов сведутся к взаимодействию друг с другом или с макрорадикалами. В условиях сильно заторможенной полимеризации или в течение индукционного периода первый тип реакций более вероятен из-за соотношения концентраций [М ] [Z ] [Z]. По тем же причинам присутствие ингибитора может исключить обычный бимолекулярньп обрыв растущих цепей. Такой предельный случай характеризуется появлением двух новых реакций со скоростями V- (взаимодействие активных центров с ингибитором) и (взаимодействие радикалов Z друг с другом)  [c.257]


    Взаимодействие ингибиторов является обратимым процессом [3]. По этому, чем более стабильный радикал образуется по реакции (9), тем меньше скорость обратной реакции и больше скорость восстановления амина. Известно [4], что стабилизации феноксильных радикалов способствует увеличение пространственных затруднений ОН-групп фенола. Действительно, мы показали [5], что при окислении этилбензола (60°С), ингибированного смесями К-фенил- -нафтиламина с различными фенолами (2,6-ди-г/)е7 -бутил-, 2-метил-6-г рег-бутил-, 2,6-дициклогексил- и 2-трет-бутилфенол), восстановление амина осуществляется только в случае о,о -дизамещенньгх фенолов. [c.233]

    Ингибиторы цепных реакций. Чем меньше запас энергии у свободного радикала, тем больше энергия активации, необходимая для реакций замещения типа (4). Поэтому чем меньше скорость исчезновения радикала в результате столкновений с молекулами, тем больше продолжительность его жизни. Вследствие этого можно сказать, что чем стабильнее радикал, тем меньшее число реакций он может инициировать. Так, например, атомарный хлор (стр. 110) реагирует со всеми органическими молекулами без ограничений, а свежеполученный атомарный иод обычно сохраняется до тех пор, пока он не встретит другой такой же атом и образует молекулу иода, Ь. Такие свобо дные радикалы, как СНд, очень быстро реагируют со всеми органическими растворителями, но в то же время можно легко приготовить устойчивые растворы, содержащие трифенилметил. Цепные процессы могут распространяться только в том случае, если все реакции замещения участвующих радикалов происходят легко. Из этого следует, что любая реакция замещения [c.27]

    Для практич. осуществления стабилизации полимеров важен эффект синергизма, возникающий при использовании различного рода химич. композиций. Это явление заключается во взаимном усилении действия антиоксидантов в смеси суммарный эффект стабилизации часто намного превосходит действие наиболее активного компонента. Известны также случаи, когда действие антиоксидантов усиливается в результате образования в процессе стабилизации новых ингибиторов. Так, при ингибированной термоокислительной деструкции полипропилена с 2,2, 4,4 -тетраметоксидифенил-азотокисью при 200°С стабильный радикал уже через несколько минут превращается в амин, к-рый сам является хорошим антиоксидантом. [c.242]

    Действие обычных ингибиторов, видимо, всегда связано с промежуточным возникновением стабильного радикала, которьи в отличие от радикала цепи не вступает в реакции с исходны.м окисляющимся веществом (больищя энергия активации) п югибает без возрождения активного центра [26,271  [c.88]

    Таким образом, ингибирование процессов окисления сводится к замене активного радикала КОг (или Н) иа малоактивный радикал 1п. Радикал ингибитора, не способный к продолжению цепной реакции, гибнет, образуя стабильные продукты главны.м образом путем димеризацип  [c.128]

    Стабильность феноксирадикалов определяется эффектом сопряжения неспаренного электрона с системой остальных связей и сте-рическими эффектами. Введение таких объемных заместителей как третичнобутил и фенил, экранирующих реакционные центры радикалов, резко повышает их стабильность. Радикалы незамещенных или не полностью замещенных фенолов легко рекомбинируют или дисиропорционируют, не накапливаясь в значительных концентрациях 4]. Между стабильностью радикала и эффективностью соответствующего фенола как ингибитора нет прямой и четкой связи, поскольку эффективность помимо реакционной способности ОН-связи зависит также от ряда других причин. Однако общая качественная симбатность между стабильностью радикала и эффективностью соответствующего фенола имеет место. [c.44]

    Третий метод основан на использовании некоторых ингибиторов, которые реагируют стехиометрически с радикалами, прекращая их рост. Часто применяют такие ингибиторы, как стабильны радикал дифепилпикрилгидразил (ДФПГ), получающийся окислением дифенилпикрилгидразина [c.183]

    В работе Ясиной и др. [253] было показано, что стабильный нитроксильный радикал 2,2, 4,4 -тетраме-токсидифенилнитроксил, эффективно тормозящий окисление полипропилена, на самом деле не является ингибитором. Этот стабильный радикал при температурах окисления переходит в соответствующий амин ХН +продукты (4.18) [c.126]

    Предположительно, это связано с тем, что испытанные нами ингибиторы не способны связывать алкильные радикалы субстрата К- и R . ча-стиуюи ие в окислительных процессах в кормах н в организме пти-п,ы [1]. В этой связи интересно нспытаиие азотокисного стабильного радикала ди-п-анизилазотокиси, способного рекомбинировать и с алкильными II с пероксильными активными радикалам в корме и в организме птицы. [c.291]

    Явление механической активации окислительных процессов в вупканизатах при многократных деформациях впервые описано в 1950 г. [77, 783 при ж -следовании влияния многократных деформаций на скорость расхода ингибитора, избирательно реагирующего с пероксидными радикалами, и расхода стабильного радикала, избирательно реагирующего со свободными радикалами при атоме углерода, установлено активирующее влияние амплитуды и частоты деформации на кинетику окислительного процесса, протекающего без предварительной деструкции молекулярных цепей. При многократных деформациях вулканизатов снижается энергетический барьер их окисления  [c.129]

    Рассмотренные представления о механизме- торможения окисления противоокислителями приводят к выводу о том, что наиболее характерным свойством ингибиторов жидкофазного окисления углеводородов является их способность образовывать стабильные свободные радикалы. Следует ожидать, что именно этим свойством должны характеризоваться соединения, играющие роль естественных ингибиторов. К числу соединений, образующих свободные радикалы, прежде всего следует отнести по-лиарилэтаны. Гомбергом в 1900 г. в ходе синтеза гексафенилэта-на в бензольном растворе впервые было установлено существование стабильного свободного радикала — трифенилметила. Оказалось, что гексафенилэтан в растворе частично диссоциирует. Происходят разрыв центральной С—С-связи и образование двух свободных радикалов трифенилметила  [c.41]

    При измерении инициирующей способности диацилпероксидов поправки на газовыделение а (табл. 1.19), найденные из зависимостей от [КН] и Жо2[И] от [И] , хорощо совпадали для всех изученных диацилпероксидов. В табл. 1.19 представлены сравнение величин к , полученных при разложении в кумоле по расходу пероксида и по выделению СО2 в газометрической установке, а также оценка к, методом ингибиторов по расходу стабильного нитроксильного радикала — танола. Полученные разными методами результаты хорошо согласуются между [c.47]

    В работе [156] для оценки выхода радикалов при термолизе пероксида лауроила методом ингибиторов был использован стабильный нитроксиль-ный радикал — танол (его расход измеряли на ЭПР-спектрометре методом калибровки). Было установлено, что скорость расхода танола при 333-353 К не зависела от его концентрации в интервале (1-4) 10 моль/л, т. е. все свободные радикалы акцептировались танолом, а последний не расходовался по побочным реакциям и не вызывал индуцированного распада пероксида. При этом найденные величины к, совпадали с найденными методом автоокисления (см. табл. 1.29). Так, подбирая ингибитор [c.62]

    В последние годы в нейтральных водных сферах в качестве ингибиторов коррозии применяют фосфонаты и бороглюконаты. Фосфонаты — фосфорорганические соединения, включающие органический радикал и функциональную группу — фосфатанион. Они, как и фосфаты, образуют комплексы с ионами поливалентных металлов, оказывают пептизирующее действие па осадки, стабилизируют соли железа, магния и кальция, образуют защитную пленку на металлах. Основное преимущество фосфонатов перед фосфатами — меньшая склонность к гидролизу и более стабильное пас- [c.89]

    Если образовавшиеся радикалы способны регенерировать цепи, то [х может быть меньше единицы. Систематические исследования Тюдёша и сотр. [6—8] показали, что для ингибиторов очень многих классов соединений х заметно меньше величины, которую можно было бы ожидать из чисто стехиометрических соображений, причем [х меняется от природы мономера и растворителя, если полимеризация проводится в растворе. Все это делает мало пригодным применение валентнонасыщенных ингибиторов в качестве счетчиков реакционных цепей. С этой точки зрения значительным преимуществом обладают ингибиторы — стабильные свободные радикалы. Для этих ингибиторов [х всегда равно единице. Бартлет и Кварт [9] предложили для этой цели свободный радикал 2,2-дифенил-1-пикрилгидразил  [c.36]

    Вторая реакция подчиняется обычным закономерностям в том смысле, что атом водорода у третичного атома углерода реагирует быстрее, чем у вторичного то же самое, несомненпо, относится и к первой реакции, поскольку кислород в этом случае реагирует как свободный радикал. На это указывает тот факт, что изопентан является значительно более эффективным ингибитором окисления ацетальдегида, чем я-пентан. Механизм ингибирования здесь сводится к отрыву атома водорода от углеводорода с образованием радикала, не способного продолжать цепь в условиях опыта. Согласно Райсу [137], относительные вероятности отрыва алкильными радикалами ато ла водорода от третичного, вторичного и первичного атомов углерода относятся приблизительно как 33 3 1, поэтому вполне вероятно, что перекиси будут образовываться в заметных количествах в различных местах молекулы, причем их образование у третичных атомов углерода будет происходить значительно легче, чем у вторичных, а у вторичных легче, чем у первичных. Поэтому полная скорость окисления, по-видимому, зависит от скорости третьей реакции, т. е. от стабильности образовавшейся перекиси. Хиншельвуд [131, 132] отметил, что все заместители, повышающие скорость реакции, являются электроноакцепторными группами, в то время как метильная группа, увеличивающая стабильность перекиси, является электронодонорпой. Из этого следует, что повышение электронной плотности увеличивает прочность связи кислород—кислород в перекиси. Эти факты согласуются с представлениями Уолша о том, что связь между сильно электроотрицательными элементами должна упрочняться электронодонорными группами [138]. [c.181]


Смотреть страницы где упоминается термин Стабильные радикалы ингибитора: [c.172]    [c.279]    [c.1150]    [c.304]    [c.414]    [c.69]    [c.364]    [c.69]    [c.289]    [c.200]    [c.91]    [c.118]    [c.420]    [c.58]    [c.363]   
Антиокислительная стабилизация полимеров (1986) -- [ c.132 ]




ПОИСК





Смотрите так же термины и статьи:

Радикал стабильный



© 2025 chem21.info Реклама на сайте