Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники работа выхода

Рис. 51. Контакт полупроводника и металла при условии, что величины работы выхода электронов из них имеют близкие значения а — начальный потенциальный барьер 6 — распределение контактной разности потенциалов между соприкасающимися телами в — результирующий потенциальный барьер. Рис. 51. <a href="/info/811622">Контакт полупроводника</a> и металла при условии, что величины <a href="/info/365077">работы выхода электронов</a> из них имеют <a href="/info/426753">близкие значения</a> а — начальный <a href="/info/8791">потенциальный барьер</a> 6 — <a href="/info/904832">распределение контактной</a> разности потенциалов между соприкасающимися телами в — результирующий потенциальный барьер.

    Если полупроводник п типа находится в контакте с металлом, у которого работа выхода электронов значительно меньше, чем у полупроводника, то в полупроводник переходит часть электронов металла. Поскольку по условию концентрация свободных электронов в объеме полупроводника достаточно велика, то их термодинамическая концентрация на контактной поверхности может приблизиться к единице. Для того чтобы оценить реальность сделанного предполол<ения, следует вычислить необходимый для этого скачок электростатического потенциала в слое пространственного заряда полупроводника, а затем сравнить величину полученного скачка с величиной контактной разности потенциалов между рассматриваемыми телами. Если при этом окажется, что скачок электростатического потенциала меньше контактной разности потенциалов, то сделанное выше предположение должно оправдаться. [c.179]

    Положение атомов примеси в кристалле может быть различным. В одних случаях такой атом (или ион) заменяет в одном из узлов решетки атом (или ион) основного вещества примеси замещения)-, в других — атомы (или ионы) примеси размещаются между,узлами решетки примеси внедрения). К примесям причисляют также атомы или ионы одного из элементов, содержащихся в данном соединении, при избыточном содержании их по сравнению со стехиометрическим составом. Следует заметить, что энергия, необходимая для отделения электрона от атомов примесей в кристалле (в среде с высокой диэлектрической постоянной), нередко бывает в десятки раз меньше, чем потенциал ионизации этих атомов в свободном состоянии. Для характеристики полупроводников пользуются также величиной Е — работой выхода электрона (см. 50). [c.147]

    Например, для собственного полупроводника работа выхода и , равна [см. уравнение (433)]  [c.453]

    В настоящей монографии предпринята попытка связать ряд свойств твердого тела (тип проводимости, ширину запрещенной зоны полупроводника, работу выхода электрона, заряд и радиус ионов, электроотрицательность атомов, кислотно-основные свойства поверхности, параметр и тип решетки) с его каталитической активностью для выявления закономерностей подбора катализаторов. Обсуждаются главным образом проблемы подбора однокомпонентных неметаллических катализаторов . Вопросы избирательности катализаторов не рассматриваются. Обзор ограничен, в основном, рамками гетерогенного катализа. В тех случаях, когда механизм реакции, но существующим представлениям, одинаков в гомогенной и гетерогенной средах, затрагивается также и подбор гомогенных катализаторов. [c.3]


    Из рассмотрения этих примеров вытекает, что электронная теория предвидит ряд возможностей, связанных с изменением активности катализаторов, и способна объяснить некоторые факты, известные из каталитического опыта. Преимущество этого пути состоит в том, что здесь с единой точки зрения можно рассматривать гетерогенный каталитический процесс и такие физические явления, как электропроводность полупроводников, работу выхода электрона, магнитные свойства кристаллов. Тем самым предсказывается и дается обоснование корреляциям, найденным между изменением каталитических и ряда физических свойств кристалла. Рассмотрение относящегося сюда материала можно найти в обзорной работе [92]. Трудность этого направления обусловлена тем, что эти связи далеко не всегда являются однозначными. Можно указать на несколько причин такой неоднозначности. Во-первых, хемосорбция и катализ могут не быть связанными с теми электронами и дырками , которые определяют значения физических свойств полупроводников — их электропроводности, работы выхода и т. п. Во-вторых, даже в благоприятном для электронной теории случае, когда элементарные акты катализа или хемосорбции связаны со свойст- [c.147]

    Рассмотрим случай, когда >5 Это значит, что 1 Металл начнет заряжаться отрицательно, полупроводник - положительно, между ними возникнет разность потенциалов V, Теперь электрону, вылетевшему из полупроводника, надо преодолеть дополнительный потенциальный барьер л у = е - заряд электрона). Те электроны, которые на смогут преодолеть его, вернутся в полупроводник. Работа выхода из полупроводника увеличим на Л(/> и станет равной = 4я /п(кГ) 2  [c.283]

    В случае полупроводников работой выхода называют наименьшую энергию, которую надо затратить для удаления электрона из полупроводника в вакуум. Уровень энергии, равный электрохимическому потенциалу, обычно называют уровнем Ферми полупроводника (см. гл. XI, 8). Ниже будет показано, что уровень Ферми играет большое значение в объяснении поведения полупроводников как катализаторов (см. гл. XI, 18, 19). Поэтому нахождение работы выхода электрона для полупроводников представляет немалый интерес. Однако обычно определяют не работу выхода электрона, а контактную разность потенциалов, которая равна разности работ выхода исследуемого полупроводника и электрода сравнения. [c.484]

    При увеличении электропроводности л-полупроводника работа выхода должна уменьшиться. Все изученные примеси, введенные в окислы ванадия и молибдена, увеличивающие электропроводность, не уменьшали, а увеличивали работу выхода электрона. Увеличение ф при действии различных добавок соответствовало отмеченной корреляции изменения ф металлов и окислов с ионизационным потенциалом атомов, входящих в состав примеси [393, 410]. Наблюдаемая зависимость между а и ф, по-видимому, указывает на различие в структуре поверхности и объема модифицированного полупроводника. [c.276]

    В окислительно-восстановительных реакциях важная роль принадлежит некоторым катализаторам, являющимся полупроводниками ( 55 ), причем между их каталитическим действием и электронно-физическими свойствами (энергетическими уровнями и работой выхода электрона) существует связь. Так, С. Я. Пшежецкий и И. А. Мясников показали, что существует отчетливая связь между электропроводностью окиси цинка и ее каталитической активностью в реакции дегидрогенизации изопропилового спирта с образованием ацетона. Это наблюдается и между каталитической активностью и температурой, и при сопоставлении результатов, полученных в атмосфере чистого азота, с результатами, получаемыми при добавлении к азоту 0,4% кислорода, сильно снижающего и электропроводность, и каталитическую активность окиси цинка в данном процессе. [c.498]

    Существуют факты, которые указывают на важную роль свободных и слабо связанных электронов катализатора в каталитической реакции. К их числу можно отнести высокие каталитические свойства переходных металлов, обладающих незавершённой -оболочкой и возможностью перехода электронов в другую электронную оболочку каталитическую активность полупроводников, электроны которых могут осуществлять переходы между уровнями заполненной и свободной зоны и уровнями примесей наблюдающийся в некоторых случаях параллелизм между каталитическими свойствами и такими свойствами веществ, как электрическая проводимость и работа выхода электрона и т. п. Влияние работы выхода электрона на каталитическую активность иллюстрирует разложение пероксида водорода на меди или никеле. Одна из стадий этой реакции состоит в диссоциации молекулы пероксида водорода  [c.360]

    Рассмотрим теперь контакт полупроводника р типа с металлом, у которого работа выхода электронов фэ также значительно [c.180]

    Но нужно учитывать, что активность полупроводников зависит не только от полупроводниковых свойств работы выхода, положения уровня Ферми, но и от энергии взаимодействия сорбируемой частицы с поверхностью. Эта энергия, включающая как кулонов-ские, так и обменные составляющие, зависит от электронной структуры катализатора и сорбируемой частицы и не может быть определена в рамках рассматриваемой теории. Если изменения этой энергии настолько малы, что ими можно пренебречь по сравнению с работой выхода электрона, например при введении очень малых концентраций добавок, сильно влияющих на положение уровня Ферми, зонная теория позволяет предвидеть изменение каталитических свойств. Положение уровня Ферми определяет активность катализатора, если энергетический спектр поверхности задан и ос- [c.166]


Рис. 40. Образование потенциального барьера на границе двух полупроводников одинаковой химической природы, обладающих различной работой выхода а—уровни полной потенциальной энергии электронов при отсутствии контактной разности потенциалов б — распределение контактной разности потенциалов между соприкасающимися кристаллами в — результирующий потенциальный барьер при равновесии. Рис. 40. <a href="/info/986376">Образование потенциального</a> барьера на границе <a href="/info/1696521">двух</a> полупроводников одинаковой <a href="/info/73051">химической природы</a>, обладающих <a href="/info/814515">различной работой</a> выхода а—уровни <a href="/info/918366">полной потенциальной энергии</a> электронов при отсутствии <a href="/info/10622">контактной разности</a> потенциалов б — <a href="/info/904832">распределение контактной</a> разности потенциалов между соприкасающимися кристаллами в — результирующий <a href="/info/8791">потенциальный барьер</a> при равновесии.
    Основным элементом большинства полупроводниковых приборов является контакт двух полупроводников с различной работой выхода электронов. При этом возможно использование одинаковых или различных по своей химической природе полупроводниковых материалов. Ниже мы рассматриваем только первый из указанных случаев. [c.171]

Рис. 49. Контакт полупроводника л типа с металлом при условии, что работа выхода из полупроводника больше, чем из металла а — начальный потенциальный барьер б—распределение контактной разности потенциалов между соприкасающимися телами в — потенциальный барьер при равновесии. Рис. 49. <a href="/info/811622">Контакт полупроводника</a> л типа с металлом при условии, что <a href="/info/4891">работа выхода</a> из полупроводника больше, чем из металла а — начальный <a href="/info/8791">потенциальный барьер</a> б—<a href="/info/904832">распределение контактной</a> разности потенциалов между соприкасающимися телами в — <a href="/info/8791">потенциальный барьер</a> при равновесии.
    На границе раздела полупроводника или металла с раствором может устанавливаться либо ионное, либо электронное равновесие. В обоих случаях контактная разность потенциалов может быть выражена через соответствующую разность работ выхода электронов. [c.203]

    При работе полупроводникового прибора даже в атмосфере весьма сухого воздуха возможны обратимые изменения его параметров. Эти изменения связаны с происходящими в окисной пленке процессами адсорбции—десорбции молекул кислорода. Указанные процессы имеют место при изменениях либо температуры, либо работы выхода электронов из кристалла полупроводника. Концентрация адсорбированных в окисной пленке молекул кислорода Со, определяется обычным выражением [c.217]

    Работа выхода электронов из полупроводника ф определяется концентрациями носителей заряда [см. формулу (29)) и может быть изменена либо за счет освещения кристалла, либо инжек-цией через р — п п — р) переход. Отсюда следует, что концентрация адсорбированных в окисной пленке молекул кислорода зависит от электрических режимов (например, от плотности протекающего через р — п переход тока), в которых работает полупроводниковый прибор. Время установления равновесия между поверхностью кристалла и окружающей атмосферой составляет при комнатной температуре от двух часов до двух суток. Поэтому после резкого изменения электрического режима, например, после включения полупроводникового прибора, происходит сравнительно медленное (2—48 час.) изменение его параметров, связанное с процессами адсорбции или десорбции кислорода. Такое явление получило название тренировки и типично для некоторых кремниевых приборов. Из сказанного выше ясно, что изменение параметров прибора, происходящее при тренировке, носит временный характер и при возвращении к исходному режиму постепенно исчезает. [c.218]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]

    Работа выхода и фотоэффект. Работой выхода электрона называется минимальная энергия, которую необходимо затратить для извлечения электрона с поверхности металла или полупроводника в вакуум. Измеряется она в электрон-вольтах, как и энергия ионизации атомов. Как правило, работа выхода электронов из металла меньше энергии ионизации атомов того же металла (табл. 21). Эта величина является [c.270]

    Это придает оксидам свойства примесных полупроводников и способность легче выделять электроны, так как работа выхода снижается до 1—1,3 эв. Существуют вольфрамово-бариевые спеченные подогревные катоды (пленочные), в которых также используются оксиды бария и стронция. С таких катодов можно получать ток при 1100—1300°К до нескольких ампер с квадратного сантиметра. [c.279]

    Формула (766) пригодна и для полупроводников, если под W понимать термодинамическую работу выхода (рис. 186, а)  [c.453]

    Работа выхода и фотоэффект. Работой выхода электрона называется минимальная энергия, которую необходимо затратить для извлечения электрона с поверхности металла или полупроводника в вакуум. Измеряется она в электрон-вольтах, как и энергия ионизации атомов. Как правило, работа выхода электронов из металла меньше энергии ионизации атомов того же металла (табл. 21). Эта величина является важной характеристикой материалов, используе.мых для изготовления фотокатодов и катодов электронных ламп (термоэмиссионных катодов). Благодаря низкому потенциалу ионизации атомов щелочных металлов и малой работе выхода они легко теряют электроны даже при простом освещении. [c.335]

    Это придает оксидам свойства примесных полупроводников и способность легче выделять электроны, так как работа выхода снижается до 1 —1,3 эВ. Существуют вольфрамово-бариевые спеченные подогревные катоды (пле- [c.345]

    Катализаторы-полупроводники. Согласно электронной теории Г. к., каталитич. активность полупроводников связа на с объемной концентрацией носителей тока (электронов и дырок). Адсорбция частицы на пов-сти полупроводника приводит к образованию дополнит, (примесного) энергетич. уровня в запрещенной зоне. Переход электрона или дырки на этот уровень изменяет их объемную концентрацию и св-ва пов-сти (напр., работу выхода электрона), на к-рой возникают заряженные центры, участвующие в каталитич. превращении. Можно представить, напр., что дегидрирование изопропилового спирта происходит по механизму  [c.539]

    В основе трибоэлектричества твердых тел лежат контактные явления. При взаимном трении двух твердых тел отдельные локальные участки поверхности этих тел вступают в контакт и затем разделяются. В момент контакта происходит переход электронов и ионов от одного тела к другому. Контактная электризация двух металлов, двух полупроводников, металла и полупроводника обусловлена переходом электронов через границу раздела от вещества с меньшей работой выхода к веществу с большей работой выхода. При контакте металла и диэлектрика электризация возникает за счет перехода электронов из металла в диэлектрик и перехода ионов того или иного знака из диэлектрика на поверхность металла. В случае контакта двух диэлектриков электризация обусловлена диффузией носителей тока из одного вещества в другое. [c.653]

    Диодные и транзисторные датчики. Принцип действия этой группы полупроводниковых газочувствительных элементов основан на зависимости от состава окружающей атмосферы либо проводимости канала, либо работы выхода электрона из полупроводника, изменяющихся в процессе реакции, протекающей на поверхности датчика. [c.78]

    Современные представления физики твердого тела позволяют разграничить катализаторы но их электронным свойствам. На рис. 4 показана схема электронных уровней металла. Нижняя часть сплошного энергетического спектра занята электронами. Над этой полосой занятых энергетических уровней расположена вплотную (без разрыва) зона свободных уровней, расстояние ф представляет энергию, требующуюся для удаления электрона из объема твердого тела, т. е. работу выхода электрона из металла. На рис. 5 представлена электронная схема полупроводника. Заполненная зона занята электронами, а на расстоянии А от нее расположена свободная зона (зона проводимости), в которой нет ни одного электрона. Для появления их в свободной зоне электроны из заполненной зоны должны приобрести дополнительную энергию А Е. [c.19]

    При большой разнице в работах выхода электронов нз полупроводника и металла контактная поверхность полупроводника приобретает металлические свойства. На границе раздела образуется при этом потенциальный барьер простейшей формы, вольт-амперная характеристика которого совпадает с вольт-ам-перной характеристикой п— р—р ) или р—п п—р) переходов. [c.184]

    Когда разница в работах выхода электронов невелика, на границе раздела полупроводник — металл возникает потенциальный барьер сложной формы, состоящий из двух последовательно расположенных барьеров. Вольт-амперная характеристика такого контакта является сверхнелинейной и может не иметь токов насыщения. [c.184]

    Таким образом, с точки зрения воздействия на величину работы выхода фэ, растворенные в воде кислоты и окислители подобны акцепторным примесям в полупроводниках, а основания и восстановители выполняют роль донорных примесей. При этом раствор нейтральных солей оказывается аналогичным скомпенсированному полупроводнику. Заметим, однако, что такая аналогия справедлива только при сравнении термодинамических свойств полупроводников и водных растворов. Влияние же примесей на электропроводность этих веществ совершенно различно. Действительно, в отличие от полупроводников, все ионизованные примеси в водных растворах являются носителями заряда. Поэтому концентрация носителей противоположного знака в таких растворах одинакова и, как правило, увеличивается при введении любой из ионизирующихся примесей. Так, если удельная проводимость скомпенсированного полупроводника не может быть больше собственной, то удельная проводимость раствора КС1 или другой [c.189]

    Методом электроосаждения пользуются для получения выпрямляющих и омических контактов на полупроводниках. Тернер и Бер-неман установили, что металлы с низкой работой выхода (например, 2п, 1п, РЬ, 8п) при электроосаждении на кремний п-типа дйют омический контакт, а на кремний р-типа — выпрямляющий. Большинство [c.217]

    Методом электроосаждения пользуются для получения выпрямляющих и омических контактов на полупроводниках. Тернер и Бернеман установили, что металлы с низкой работой выхода (например, 2п, 1п, РЬ, 5п) при электроосаждении на кремний я-типа дают омический контакт, а на кремний р-тииа — выпрямляющий. Большинство исследованных металлов (1п, Сс1, Си, N1, Аи и др.) дает выпрямляющие контакты на я-Ое и омические — на р-Се. [c.268]

    Н. Д. Зелинским) о совместном воздействии физ. и хим. св-в пов-стн катализатора иа Превращаемые молекулы. Еще в сер. 19 в. А. И. Ходневым было выдвинуто представление об образовании промежут. поверхностных соед., роль к-рых наиб, последовательно рассмотрена в кон. 19-иач. 20 вв. П. Сабатье. Важную роль в развития теоретич. представлений сыграло Выйвинутое Г. Тейлорйм в 1925-26 предположение, связывающее каталитич. активность твердых тел с расположением атомов ha их пов-сти и наличием активных центров. Мультиплетная теория Г.к. (A.A. Баландин, первые публикации 1929) придает решающее значение соответствию расстояний между атомами молекул реагентов и параметров кристаллич. структуры катализатора (металла). В дальнейшем теория дополнена представлением о необходимости определенного соответствия энергий связей, разрывающихся и образующихся в результате р-ции, н энергий связи реагентов с катализатором при промежут. взаимодействии. Каталитич. действие полупроводников объясняли на основе электронной теории, согласно к-рой взаимод. реагентов с катализатором осуществляется при участии электронов проводимости и потому завнсит от расположения энергетич. зон и локальных уровней, концентрации носителей тока, работы выхода электрона и т.п. Широкое распространение получило предположейие, согласно к-рому особыми активными местами иа пов-сти твердых катализаторов являются кристаллографич. ребра и углы, а также выходы иа пов-сть дислокаций, т.е. нарушения кристаллич. Структуры. Для нанесенных катализато ров были развиты представления об особых св-вах отдельно расположенных, локализованных на пов-сти атомов или совокупностей атомов - ансамблей (теория активных ансамблей Н.И. Кобозева, 1939). [c.542]

    С использованием низкоэнергетического возбуждающего источника света и сферического анализатора энергии электронов в задерживающем поле измерены УФ-фотоэлектронные спектры пленок Сьо толщиной 20 нм, напыленных в вакууме на медную подложку при комнатной температуре. Из полученных спектров определены пороговая энергия ионизации 1=6,17 эВ и работа выхода р=4,85 эВ, которая выше, чем в алмазе (4,5) и фафите (4,7 эВ), Получены оценки энергий поляризации катионов и анионов Сьо и элекфонного сродства Сбо в-твердой фазе, которые обсуждены с учетом энергетической релаксации молекул Сбо в конденсированном состоянии. Предложена энергетическая диаграмма твердого Сбо, показывающая, что уровень Ферми расположен вблизи дна зоны проводимости и, следовательно, кристаллический Сбо является полупроводником п-типа. Из физики твердого тела извe тнo что две другие аллотропные формы - графит и алмаз - являются соответственно металлом и диэлектриком. Фазой с металлическими свойствами (металлом) называется фаза, в которой либо не все квантовые состояния валентной зоны заняты электронами, либо последняя перекрывается зоной проводимости. При [c.130]

    Согласно электронной теории хемосорбции, локализация свободных носителей вблизи адсорбированного атома или на нем приводит к заряжению поверхности относительно объема полупроводника. Последнее можно однозначно констатировать по изменению работы выхода Аф и электропроводности полупроводника Аа. Нейтральная (слабая) форма хемосорбции не изменяет Дст, но, создавая дополнительный потенциальный барьер на поверхности, приводит к изменению Аа (дипольпая слагающая работы выхода [25]). Но физическая адсорбция полярных и сильно-поляризующихся молекул также приведет к изменению Аф. Таким образом, в эксперименте по данным измерения Аф мы не можем отличить физическую адсорбцию от нейтральной формы хемосорбции, хотя их теоретическое рассмотрение, согласно существующим представлениям, требует различных подходов. [c.95]

    Обнаружено [27—29, 35], что адсорбция указанных выше молекул на гидратированной поверхности окисных полупроводников (Т10а, СнаО, ЗпО, 2п0, У Об, РЬО), а также на покрытых ою сной пленкой германии и кремнии приводит к резкому изменению основных электрофизических параметров поверхности. Все эти молекулы адсорбируются как доноры, т. е. смещают потенциал поверхности в положительную область. 11ри комнатной температуре образование на поверхности ионов НаО" , и т. д. мало вероятно из-за весьма высокой энергии ионизации. Молекулы связаны с поверхностью сравнительно слабо, длительная откачка при 20— 100° С полностью восстанавливает исходное значение Начальные теплоты адсорбции не превышают —1 эв [39]. В качестве примера на рис. 1 приведены данные по обратимому изменению работы выхода Аф и электропроводности Да гидратированной п-Т102 (по данным Е. Н. Фигуровской) при адсорбции воды и десорбции. Теплоты адсорбции в этой области составляют 0,7 эв. [c.98]

    Величина ф — работа выхода электрона из полупроводника. Как показал Болькенштейн 171 ], свободный электрон или дырка решетки полупроводника может выполнять функцию центров адсорбции и катализа. [c.20]

    Для окислов п.-типа (VaOs, ZnO) концентрация свободных электронов в приповерхностном слое будет уменьшаться вследствие перехода электрона от твердого тела к хемосорбированной молекуле. Для окислов р-типа (NiO, СнгО) концентрация дырок в слоях, расположенных вблизи поверхности, будет возрастать при хемосорбции акцепторных молекул. Направление перехода электрона зависит от положения уровня Ферми в кристалле и энергетического уровня хемосорбированной молекулы. Положение уровня Ферми определяет концентрацию дырочного и электронного газа на поверхности. При хемосорбции, когда электрон или дырка из твердого тела переходит на адсорбированную молекулу, поверхность полупроводника заряжается, и в приповерхностном слое возникает объемный заряд противоположного знака. В результате такого процесса наблюдается искривление энергетических зон вблизи поверхности полупроводника [162 J. Вследствие искривления зон положение уровня Ферми на поверхности кристалла сдвинуто по сравнению с положением его в объеме на величину Ае. Такое изменение положения уровня Ферми сопровождается изменением концентрации свободных электронов и дырок и вызывает изменение электропроводности Аа чем больше As, тем больше Аст. Работа выхода электрона ф — есть расстояние от уровня Ферми до уровня, соответствующего значению потенциала в пространстве над твердым телом. Изменение работы выхода Дф = —Ае (если пренебречь влиянием динольного момента у нейтральной молекулы). Работа выхода электрона изменяется в зависимости от степени заполнения поверхности адсорбированными молекулами. Увеличение работы выхода наблюдается при адсорбции акцепторных, а уменьшение — при адсорбции донорных молекул на поверхности полупроводника. Согласно [c.54]


Смотреть страницы где упоминается термин Полупроводники работа выхода: [c.61]    [c.117]    [c.183]    [c.196]    [c.217]    [c.208]   
Новые проблемы современной электрохимии (1962) -- [ c.397 ]

Новые проблемы современной электрохимии (1962) -- [ c.397 ]




ПОИСК





Смотрите так же термины и статьи:

Полупроводники

Полупроводники полупроводники

Полупроводники работа выхода электрона

Работа выхода

Работа выхода электрона и каталитические свойства переходных металлов и полупроводников

Работа выхода электрона со свойствами металлов и полупроводников



© 2024 chem21.info Реклама на сайте