Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические азосоединения кислоты

    Группа 1Г Вещества, на свойства которых преобладающее влияние оказыва-ют неполярные остатки углеводороды н их галогенпроизводные, простые и сложные эфиры, спирты более чем с пятью С-атомами, высшие альдегиды и кетоны высшие оксимы, средние и высшие карбоновые кислоты, ароматические карбоновые кислоты, ангидриды кислот, лактоны, высшие нитрилы и ам.иды кислот, фенолы, тиофенолы, высшие амнны, хиноны, азосоединения. [c.296]


    Основные научные работы относятся к химии ароматических азосоединений. Получил (1864) бензи-дин действием амальгамы натрия на нитробензол в присутствии уксусной кислоты. Разработал [c.101]

    Химическую модификацию полиамидов можно осуществлять различными путями прививкой на полимер подходящих мономеров, прививкой к полимерам мономеров, образующих полиамид (кап-ролактам), сшиванием полиамидов другими полимерами и полимераналогичными превращениями с помощью реакционноспособных низкомолекулярных соединений. В качестве сшивающих агентов могут быть использованы изоцианаты [196, 197], хлорированный полиэтилен [198], эпоксиды [197], ангидриды ароматических дикарбоновых кислот [199, 211], гидр азосоединения [200], дихлор-ангидриды дикарбоновых кислот, акриловые эфиры многоосновных кислот [201]. [c.140]

    Аналогичный механизм восстановления мы встречаем у ароматических азосоединений [52], При исследовании поведения динитрила азодиизомасляной кислоты на фоне буферных растворов в 60%-ном этаноле было установлено, что в кислых буферных растворах 1/2 сдвигается в сторону более отрицательных значений с возрастанием pH. В нейтральной и щелочной областях /2 этого вещества мало зависит от pH. Величина диффузионного тока остается постоянной при всех значениях pH. [c.145]

    Хлордифенилы не должны содержать следов кислот. Хотя хлордифенилы довольно стойки, для некоторых электротехнических целей может оказаться необходимым применять пор шесть классов стабилизаторов - динения, ангидрид малеиновой кислоты и ее производные, сера, селен,соли сильного основания и слабой кислоты и адсорбенты — дополнены очень эффективными стабилизаторами, хорошо растворимыми ароматическими азосоединениями и дикетонами, которые особенно пригодны при работе в интервале температур 70—100° С. [c.557]

    Таким образом, и в ароматических аминах первичная аминогруппа при действии азотистой кислоты может быть заменена на гидроксил. Этим путем из первичных ароматических аминов получаются фенолы, но реакция происходит с промежуточным образованием ди азосоединений по схеме [c.388]

    Взаимодействие солей диазония с ароматическими аминами, фенолами или некоторыми СН-кислотами с образованием соответствующих азосоединений. [c.214]

    Задача 24.6. а) Сочетание солей диазония с первичными или вторичными (ио не третичными) ароматическими аминами осложняется побочной реакцией, в результате которой образуется соединение, изомерное азосоединениям. Основываясь на реакции вторичных ароматических аминов с азотистой кислотой (разд. 23.12), предположите вероятную структуру этого побочного продукта, б) При обработке минеральной кислотой этот побочный пр одукт регенерирует исходные реагенты, которые при рекомбинации дают азосоединения. Какова, по вашему мнению, функция кислоты в ходе этой регенерации Указание см. задачу 5.6, стр. 162.) [c.744]


    Органические основания по своей природе так же многообразны, как и органические кислоты. Фактически все классы соединений за исключением углеводородов, их галогенопроизводных, тиоспиртов и тиоэфиров, нитро-, нитрозо- и диазосоединений обладают ясно выраженными основными свойствами. При этом по способности к протонированию (реакция 5.1) они располагаются в ряд амины неароматические > амины ароматические > спирты > > фенолы > простые эфиры > кетоны > альдегиды > азосоединения > сложные эфиры > амиды карбоновых кислот > карбоновые кислоты. Среди этих соединений выделяются неароматические амины, которые в водном растворе 138 [c.138]

    Предварительное исследование часрв может значительно упростить дальнейшую работу, хотя само по себе оно далеко не всегда ведет к полному решению поставленной задачи. Ценными могут оказаться данные о цвете и запахе исследуемого вещества. Если чистое вещество окрашено, — отпадает возможность его отнесение ко многим классам органических соединений, так как большинство углеводородов, спиртов, простейших альдегидов и кетонов, сложных эфиров, карбоновых кислот и эфиров бесцветны. С другой стороны, все ароматические азосоединения окрашены нитрозопроизводные углеводородов часто окрашены в синий или зеленый цвет, в особенности в расплавленном состоянии..Окрашенность соединений ароматического ряда может быть также связана с одновременным присутствием нитро-и аминогрупп, а также нитро- и оксигрупп, причем окраска веществ, содержащих все эти заместители, может измениться при их превращении в соответственные соли. [c.517]

    Главная реакция диазосоединений без выделения азота - азосо-четание, в ходе которой группа Аг - N = N - замещает водород ароматического ядра в фенолах или третичных ароматических аминах. Азосочетание — это одна из реакций электрофильного замещения в ароматическом ядре диазосоединение играет роль электрофильной частицы [СбН,—N = N3 , вступающей в обогащенное электронами ядро фенола или амина. В результате азосочетания образуются ароматические азосоединения,характерным структурным признаком которых является наличие группировки Аг-Ы = Ы-Аг. Азосоединения - окрашенные вещества. Именно это их свойство используется для получения азокрасителей. Примером простейшего такого красителя может служить метиловый оранжевый (другое название — гелиантин), который получается при азосочетании диазотированной сульфаниловой кислоты и диметиланилина  [c.396]

    Триметоксиалюмогидрид лития восстанавливает до спиртов альдегиды и кетоны, а также кислоты, их ангидриды, галогенангидриды, сложные эфиры и лактоны [3230]. Эпоксисоединения реагируют с ним медленнее, чем с Ь1А1Н4, однако расщепление окисного кольца идет более селективно [3230, 3231]. Большая стереоселективность триметоксиалюмогидрида лития по сравнению с немодифицирован-ным гидридом или три (трег-бутокси) алюмогидридом лития проявляется и при восстановлении кетонов так, в случае бициклических кетонов образуется весьма чистый термодинамический менее стабильный изомер спирта [3224]. Нитрилы и амиды восстанавливаются до аминов, причем не наблюдалось выделения водорода в случае алифатических нитрилов [3224, 3231]. Оксимы, ароматические азосоединения и тозилаты с триметоксиалюмогидридом лития не реагируют или реагируют очень медленно [3224]. [c.271]

    Метод коммутаторной полярографии был использован при изучении стадии первичного электронного переноса при электровосстановлении некоторых гидразинов и гидразонов [102], различных карбонильных и дикарбонильных соединений [97—99], ароматических азосоединений [103], нитро- и нитрозосоединений [100, 104], производных ароматических карбоновых кислот [96], а,р-ненасыщенных сульфонов [101] и т.д. [91]. С помощью этого метода было обнаружено образование не только первичных, но и вторичных частиц — аниои-радикалов—при восстановлении ди-метилмалеината и диметилфумарата в диметилформамиде при потенциалах третьей волны их восстановления [105]. [c.44]

    Ароматические азосоединения, имеющие в бензольном ядре в ортоположении к азо-группе гидроксил, придают ПО высокую светостойкость в смеси со щелочными или щелочноземельными солями жирных кислот. Так, ПП, содержащий 0,5 вес.% 2-окси-4-метилазобензол и 0,4 вес.% стеарата кальция, становился хрупким после II50 час. экспонирования под ртутной лампой, стабилизированный только азосоединением -после 450 час., а без стабилизаторов разрушался через 60 часов [556]. [c.77]

    Наполовину ароматические азосоединения более устойчивы, чем алифатические, вследствие сопряжения азогруппы с ароматическим ядром (стр. 564) однако они менее устойчивы, чем ароматические азосоединения. Вензолазоэтан СвНбК=КСНгСНз — желтоватая жидкость, кипящая при 180° со слабым разложением. При нагревании бензол-азоэтана с разбавленными кислотами в результате изомеризации и гидролиза, аналогично приведенным выше, образуются фенилгидразин и уксусный альдегид. [c.572]

    По имеющимся данным, алюмогидрид лития реагирует с соединениями, содержащими фенольные гидроксильные группы, амино- и имино-группы, и с ароматическими карбоновыми кислотами аналогично реагенту Гриньяра. Будучи сильным восстановителем, алюмогидрид лития восстанавливает нитрогруппы до азогрупп эфиры, альдегиды, кетоны, ангидриды и хлорангидриды кислот — до соответствующих спиртов. Даже свободные карбоновые кислоты превращаются в первичные спирты. Галогенопроизводные восстанавливаются до углеводородов. Из нитрилов образуются амины, амиды кислот и лактамы превращаются в амины, азоксиметины — в замещенные амины Некоторые соединения, не содержащие активных атомов водорода, в результате восстановления алюмогидридом лития превращаются в вещества с активными атомами водорода. В тех случаях, когда в процессе восстановления не происходит выделения водорода, можно определять исходное вещество, измеряя объем водорода, выделяющегося из продукта его восстановления. При этом предполагается, что известно, какая функциональная группа обусловливает образование продукта восстановления, содержащего активный водород. Этот путь нельзя рекомендовать для определения нитро-rpj nn, восстанавливающихся алюмогидридом лития до аминогрупп с образованием водорода, так как неизвестна количественная характеристика взаимодействия алюмогидрида лития с нитрогруппами. (нитросоединения реагируют очень энергично из алифатических нитросоединений получаются амины, а из ароматических нитросоединений — азосоединения). Следовательно, отщепление водорода при действии алюмогидрида лития па вещество неизвестного строения само по себе не может служить бесспорным доказательством присутствия активного водорода. Принимая во внимание большую реакционную способность алюмогидрида лития и его восстанавливающее действие, а также то обстоятельство, что механизм реакции с некоторыми группами еще ие выяснен, следует рекомендовать определять активн1э1и водород по Цере-витинову, а реакцию с алюмогидридом лития проводить параллельно этому определению. [c.317]


    При кипячении эквимолекулярных количеств ароматических первичных аминов с нитрозосоединениями в ледяной уксусной кислоте (реже в спирте) происходит конденсация, сопровождающаяся отщеплением воды, и обра зуются азосоединения  [c.593]

    На ртутном капающем электроде восстанавливаются не только ионы металлов, но н многие органические вещества различных классов. К их числу относятся, например, углеводороды и их галогенопроизводные, альдегиды, кетоны, предельные и непредельные органические кислоты алифатического и ароматического рядов, меркаптаиБ , нитро- и нитрозосоединения, ок-снмы, азосоединения, различные гетероциклические соединения (акридин, хинолин и другие), алкалоиды и т. п. [c.509]

    Аналогичные преврандения, осложненные образованием азосоединений и аминов, происходят также при нагревании ароматических гидразосоединений в отсутствие кислот [c.20]

    Ароматические амины и альдегиды ароматические иитросо единения, азосоединения и т. д. и альдегиды. Анилин превращается TI этипанйлин при обработке его уксусным альдегидом и водородом в присутствии никеле Бого ИЛ И платинового катализатора [32. 33] или при воостановлент цинком в серной или сернистой кислоте [34, 35]. [c.358]

    Реакция аминов с азотистой кислотой (разд. 23.12) также находит некоторое применение для определения класса амина, хотя этот метод менее надежен, чем метод Хинсберга. Наиболее характерно поведение первичных ароматических аминов при обработке азотистой кислотой они превращаются в соли диазония, которые образуют ярко окрашенные азосоединения с р-аафтолом (фенол см. разд. 24.10). [c.724]

    Например азосоединения тропеолин и хризоидин под действием выделяющегося на стали водорода в соляной кислоте подвергаются превращениям с образованием димеров, ароматических аминов, гидроазосоединений, производных гидразина, которые являются ингибиторами коррозии стали. [c.53]

    Перекись ацетила может быть получена действием перекиси натрия на эфирный раствор уксусного ангидрида или, что менее удобно, при взаимодействии хлористого ацетила с твердой перекисью водорода 2. в противоположность перекиси бензоила перекись ацетила обесцвечивает раствор индиго и выделяет ио-д из иодистого калия. При действии воды перекись ацетила гидролизуется, образуя гидроперекись ацетила (надуксусную кислоту). Удобным способом получения нервкиси ацетила является действие уксусного ангидрида на очень концентрированный раствор перекиси водорода, содержа1Ций 1% серной кислоты. При перегонке полученной смеси в вакууме и вымораживании дестиллата получают чистую гидроперекись ацетила Это вещество чрезвычайно легко взрывает и является сильным окислителем разъедает пробки, резину н кожу. Первичные ароматические амины окисляются гидроперекисью ацетила в нитрозосоединения, а азосоединения — в азоксисоеди-нения . О применении ее для окисления непредельных соединений этиленового ряда см. стр. 31. [c.305]

    В рассмотренных до сих пор способах восстановления ароматических нитросоединений реакция направлялась на образование аминосоеДинений или гидроксиламина. При определенных условиях при восстановлении могут такж , образоваться продукты, содержащие две арильные группы, а именно азокси-соединения RNO NR, азосоединения RN NR и гидразосоеди-иения RNHNHR. Обычно такие соединения образуются при восстановлении в щелочной среде или, по крайней мере, при отсутствии свободной кислоты Получение соединений" этого типа, повидимому, связано с промежуточным образованием нитрозосоединений и -гидроксиламинов, которые затем в результате конденсации превращаются в азоксисоединения в соответствии с уравнением [c.412]

    В то время как в ряду бензола важнейшим методом синтеза ароматических аминов является нитрование с последующим восстановлением, в ряду пиридина ни один из методов синтеза аминопиридинов не играет столь доминирующей роли среди других возможных способов. В синтезе аминопиридинов в равной мере важны аминирование, нитрование с последующим восстановлением и аммонолиз галогенпиридинов. Кроме того, в отдельных специфических случаях используется гофмановская перегруппировка амидов кислот, перегруппировка азидов по методу Курциуса, восстановление азосоединений и аммонолиз соединений, подобных хлоргидрату хлористого пиридилпиридиния. [c.424]


Смотреть страницы где упоминается термин Ароматические азосоединения кислоты: [c.328]    [c.70]    [c.169]    [c.400]    [c.137]    [c.70]    [c.63]    [c.238]    [c.444]    [c.105]    [c.321]    [c.259]    [c.546]    [c.494]    [c.366]    [c.494]    [c.603]    [c.235]    [c.185]    [c.376]    [c.461]   
Химически вредные вещества в промышленности Часть 1 (0) -- [ c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Азосоединения

Ароматические кислоты



© 2025 chem21.info Реклама на сайте