Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфаты также фосфориты аммония

    В повышении продуктивности животноводства важная роль принадлежит минеральным подкормкам животных (фосфатам кальция, натрия, аммония, мочевины, а также солей микроэлементов), благодаря которым удовлетворяется потребность в протеине, минеральных веществах и витаминах. Как известно, в минеральных составляющих организмов животных содержится до 70% фосфора и кальция. Потребляемые животными силос, корнеплоды, солома и концентрированные корма, как правило, содержат недостаточное количество фосфора, что резко снижает усвояемость растительных питательных веществ и повышает расход кормов. Применение минеральных подкормок в животноводстве экономически выгодно, так как 1 руб., затраченный на кормовой фосфат, дает прибыль не менее 10 руб. [c.183]


    Если азота и фосфора меньше, чем требуется для очистки воды определенного состава, то их добавляют в виде фосфатов и хлористого аммония. Добавление солей для биологической очистки необходимо только при обработке производственных сточных вод. В бытовых же водах, доступных бактериям, азота и фосфора всегда достаточно. Аммонийный азот образуется в большом количестве при гидролизе мочевины кроме того, азот белковый в результате процесса аммонификации также переходит в аммонийную форму. [c.60]

    Осаждение в цитратной среде. Осаждая фосфат магния и аммония в присутствии цитрат-ионов, отделяют фосфор (V) от железа (П1), алюминия, титана, кальция, цинка, марганца, фторид-ионов, а также от тех малых количеств кремнекислоты, которые обычно присутствуют в природных фосфатах. В большинстве случаев это лучший метод определения фосфатов, хотя часто осадок приходится переосаждать. [c.1086]

    Для извлечения доступного фосфора из почвы по методу Кирсанова используют 0,2 н. раствор НС1 и сравнивают синее окрашивание, получаемое от прибавления к солянокислой вытяжке молибденовокислого аммония (при помешивании оловянной палочкой), со стандартными растворами фосфата кальция. По мнению автора, 0,2 н. раствор соляной кислоты соответствует растворяющей силе корневых выделений растения. В вытяжку переходят все фосфаты кальция и большая часть фосфатов полуторных окислов, а также фосфор из апатита. [c.159]

    Обработка прокаленного остатка пирофосфата магния 1—2 каплями азотной кислоты и вторичное его прокаливание не ухудшают результатов, но редко приносят пользу. После растворения пирофосфата магния в азотной кислоте и последующего выпаривания и прокаливания получаются пониженные результаты, так как невозможно предотвратить улетучивание фосфора и даже механические потери вследствие разбрызгивания остатка. Имеются указания на то, что эта операция проходит успешно, если азотнокислый раствор перед выпариванием и прокаливанием нейтрализовать аммиаком. Хорошие результаты получаются также, если кислый раствор пирофосфата обработать 2—3 мл магнезиальной смеси, затем аммиаком и осадок отфильтровать и промыть, как обычно. Можно также с самого начала растворить осадок фосфата магния и аммония в азотной кислоте, раствор выпарить и затем прокалить сухой остаток. [c.721]

    Минеральные соли. Чаще всего для роста требуются положительно заряженные ионы кальция, калия, натрия, железа и магния, а также отрицательно заряженные хлорид-, фосфат- (источник фосфора) и сульфат-ионы (источник серы). Как отмечалось выше, азот вносят в виде аммония или нитрата. Потребности для роста водорослей примерно такие же, как и для роста растений (см. табл. 7.7 и 7.8). [c.41]


    Для определения фосфора предварительно отделяют мышьяк (а также примеси Sb, Sn и Hg) осаждением в кислой среде с помощью сульфида натрия, из фильтрата выделяют фосфор осаждением в виде фосфата магния-аммония, заканчивают определение комплексонометрическим титрованием магния или гравиметрическим методом, прокаливая осадок до нирофосфата магния. [c.203]

    Описанная обработка неприменима к минералам, состоящим в основном из фосфатов Для разложения таких минералов требуется однократное или многократное сплавление с карбонатом натрия, за исключением тех случаев, когда их исследуют на содержание одного лишь компонента (обычно тория). В водной вытяжке плава содержатся фосфор мышьяк, сурьма, олово и вольфрам, а также большая часть креМния, алюминия и урана. Остаток тщательно промывают разбавленным раствором карбоната натрия, а фильтрат выпаривают с азотной кислотой для переведения кремнекислоты в нерастворимое состояние (при этом частично выделяются также вольфрам и сурьма). После выпаривания и отделения кремнекислоты фильтрат насыщают сероводородом для удаления свинца, мышьяка и оставшейся в растворе части сурьмы. Удалив -сероводород и упарив раствор, осаждают фосфор молибденовой жидкостью (стр. 781) (которую предварительно проверяют на содержание алюминия и других осаждающихся аммиаком элементов) и заканчивают его определение, как указано в гл. Фосфор (стр. 784). Из фильтрата, выпаренного для удаления избытка азотной кислоты, выделяют алюминий двукратным осаждением аммиаком (стр. 565). Осадок промывают 2%-ным раствором нитрата аммония, прокаливают и взвешивают. [c.625]

    НИЯ происходит уже при двойном по сравнению с теоретически требуемым количеством осадителя. Было установлено также, что при промывании осадка чистой водой происходит извлечение фосфора из осадка. Указанные выше авторы осаждали цирконий добавлением 1 г фосфата аммония, который они предпочитают фосфату натрия, хотя последний также полностью осаждает цирконий. [c.972]

    Определение полуторных окислов в минералах, содержащих большое количество фосфора, проводят по одному из следующих способов. Минерал сплавляют с карбонатом натрия и сплав выщелачивают водой. Операцию сплавления и выщелачивания проводят дважды. Этим путем удается полностью освободиться от фосфора, а также от ванадия и хрома. Однако при этом в ш,е-лочную вытяжку переходит значительная часть алюминия, который определяют в виде фосфата или 8-оксихинолината и вносят поправку на его содержание. Фосфат-ион отделяют от элементов третьей аналитической группы перед осаждением полуторных окислов молибдатом аммония , избыток которого удаляют в виде сульфида из кислого раствора под давлением или в некоторых случаях выделяют молибден электролизом на ртутном катоде в 0,5 и. растворе серной кислоты . При этом одновременно с молибденом из раствора выделяются также железо и хром (которые определяют в отдельной навеске). [c.99]

    Азотио-фосфориые удобрения 1/284, 286, 467 2/84, 290, 869, 870 3/172, 519-521, 564 5/54, 305. См. также Аммония фосфаты. Аммофос, Диаммофос Азотные воды 3/170 Азотные лазеры 2/11I8-1120. 1124 Азотные удобрения 1/102 2/348. 591 3/505. 850, 856, 861, 862 5/54, 702. См. также Комплексные удобрения. Минеральные удобрения. Селитры амидные, см. Карбамид, Мочевина аммиачные и аммонийные I/I02, [c.538]

    В том случае, когда в анализируемой пробе содержится фосфор, приведенный выше ход анализа нужно несколько изменить. В платиновую чашку после разрушения 8-оксихинолина добавляют 2—3 капли раствора оксида ртути в аммиаке, содержащем карбонат аммония, и нагревают 5 мин на водяной бане. Выпавший осадок оксида ртути, а также фосфата и хромата ртути отфильтровывают, промывают 3—4 раза холодной водой. Фильтрат с промывными водами собирают во взвешенный платиновый тигель и далее поступают, как описано выше. [c.215]

    Наиболее широкое применение как фосфаты аммония, так и по-Лифосфаты аммония нашли в сельском хозяйстве в качестве удобрения. Они содержат два основных питательных элемента — азот и фосфор — в водорастворимой форме. Фосфаты аммония применяют также в виде компонентов комплексных удобрений и для получения жидких удобрений 265-274. [c.516]

    НИТРОФОСКА. Сложное удобрение, содержащее азот, фосфор и калий. Общее содержание питательных веществ, в зависимости от метода производства, колеблется от 35 до 52%, а в Н., получаемых на основе фосфатов аммония, может достигать 60%. Все виды Н. выпускаются в гранулированном виде, обладают удовлетворительными физическими свойствами, малогигроскопичны, не слеживаются и хорошо рассеваются. Наиболее распространенным способом получения Н. в большинстве стран является разложение природных фосфатов азотной кислотой или смесью азотной с серной или фосфорной кислотами, с последующей нейтрализацией аммиаком и добавлением калийных солей. По одному из способов Н. получают, вымораживая из азотнокислотной вытяжки нитрата кальция. Н. М01ЖН0 получить также путем сплавления фосфатов аммония с аммиачной селитрой и калийными солями. Наиболее целесообразно применение Н. в тех случаях, когда необходимо в один прием вносить азот, фосфор и калий. Особенно велика потребность в Н. в нечерноземных районах и во влажных районах лесостепной зоны. [c.201]


    Особое значение имеют соли кальция Са(Н2Р04)г и СаНР04, которые получили широкое применение в сельском хозяйстве. Применяется также соль аммония ортофосфорной кислоты ЫН4Н2РО4, хорошо растворимая в воде. Она относится к числу сложных удобрений, так как содержит два необходимых для растений элемента — фосфор и азот. Однозамещенный фосфат аммония получил названия аммофос. [c.230]

    В неорганическом анализе широко применяют концентрирование в статических условиях. Сорбцию микроколичеств сурьмы (V) из разбавленных растворов азотной кислоты оксидом алюминия ускоряют облучением растворов ультразвуком [647]. Гидратированный оксид железа (III) используют для концентрирования до 10 г/г хрома и ванадия при анализе алюминия высокой чистоты методом кулонометрического титрования [648]. Микроколичества фосфат- и арсенат-ионов количественно сорбируют на порошке оксида цинка. Затем сорбент растворяют в 6 М хлороводородной кислоте [649]. Метод использован при спектрофотометрическом определении фосфора в воде, а также фосфора и мышьяка в свинце высокой чистоты. При анализе меди 10 г/г висмута селективно выделяют на гидратированном оксиде свинца, который затем растворяют в растворе оксалата натрия и определяют висмут полярографически [650]. Микроколичества мышьяка и фосфора из водных растворов концентрируют на прокаленном сульфате бария или стронция [651, 652]. При спектрофотометрическом определении п -10 г/г Se в меди селен сорбируют на сульфате свинца, который затем растворяют в растворе тартрата аммония и анализируют [397]. При определении до 0,01 мкг/л цезия в воде его сорбируют на фосформолибдате аммония. Затем сорбент растворяют в растворе гидроксида натрия и экстрагируют тетрафенилборатом натрия в смеси метилизобутилкетона и циклогексана. Цезий определяют методом фотометрии пламени [653]. [c.101]

    НИТРОФОСФАТЫ, сложные комплексные удобрения, содержащие в качестве осн. питат. элементов азот, фосфор и калий. Н. включают гл. обр. нитраты и фосфаты аммония (нитрофос, азофос), а также соли калия (нитрофоска, азофоска). [c.286]

    При определении серы в фосфоре чувствительность при потоке 0,87-10 нейтр1см -сек и времени облучения 20 час. для навески фосфора в 1 0 составляет для серы 2-10" %, относительная ошибка 10—20% [518]. Метод нейтронной активации применен для определения серы на бумажных хроматограммах [1224], 10" % S в мьш1ьяке [1149], в молибдене [762] и в чистой меди [106]. В последнем случае используют реакцию (и, /)) Р. Пробу и эталоны (содержащие элементную серу) облучают 5 час. в нейтронном генераторе с выходом нейтронов 8-10 нейтрЫм -сек. После разложения пробы концентрированной азотной кислотой в присутствии фосфата как носителя осаждают фосфоромолибдат аммония и измеряют Р-активность Р на сцинтилляционном счетчике. Ошибка определения (1,5—2) 10" % S составляет 15—20% [106]. Методика может быть также применена для определения серы в цинке, никеле, магнии, кобальте, щелочных и щелочноземельных металлах и РЗЭ. [c.156]

    Разработано также несколько методов радиохимического определения бериллия нри помощи радиоизотопов других элементов. Алимариным 1и Гибало [79] предложено радиометрическое титрование бериллия двузамещенным фосфатом аммония, содержащим радиоизотоп фосфора рз . Предварительно были установлены условия, при которых бериллий количественно осаждается фосфатом аммония (ацетатный буферный раствор, pH 5—5,5) в виде Вез(Р04)2- Точку эквивалентности находят графически или по формуле. Влияние посторонних элементов устраняется комплексоном П1. Метод позволяет определять 0,7— 9 м,г Ве. [c.89]

    Иногда избыток фосфора удаляют из анализируемых объектов методом ионообменной хроматографии [1125], электролизом [1168], осаждением фосфора в виде фосфата лтелеза с применением уротропина [7]. Фосфор удаляют также вместе с многовалентными катионами обработкой щелочью в присутствии брома или аммиаком в присутствии хлорида аммония, либо выделяют его ацетатом натрия вместе с алюминием и келезом [1415] или цирконилхлори-дом [1505]. [c.145]

    Все химические данные, а также спектры поглощения указывают, что центральный атом определяет все свойства двенадцати окружающих его молибдат-ионов. Это видно из спектра поглощения желтая окраска обусловлена сдвигом всей полосы поглощения молибдата к длинноволновой части спектра. Далее, резко изменяется растворимость различных соединений так, фосфат аммония и молибдат аммония хорошо растворимы в воде, тогда как фосфоромолибдат аммония малорастворим. Существенно изменяется отношение к органическим растворителям. Изменяются даже такие характерные свойства, как отношение к восстановителям. На восстановлении ГПК до синих соединейий основан ряд методов определения фосфора, кремния и других центральных атомов свободный молибдат в этих же условиях почти не восстанавливается. Наконец, хорошо известен индивидуальный характер ГПК, т. е. зависимость свойств от центрального атома. Так кремнемолибденовая кислота значительно более устойчива к действию различных (оксалат, тартрат и др.) комплексонатов и кислот по сравнению с фосфорномолибденовой кислотой. Необходимо подчеркнуть, что образование кремнемолибденовой кислоты происходит п и меньшей кислотности, чем фосфорномолибденовой кислоты. Однако это связано не с устойчивостью кремнемолибденовой кислоты, а со свойствами кремневой кислоты, которая в кислых растворах сильно полимеризована (сМ.ниЖе). [c.259]

    Для отделения циркония от титана, алюминия, хрома, кобальта, никеля, меди, урана, ванадия, тория и молибдена, а также от таких малых количеств кремнекислоты и вольфрама, какие могут остаться в растворе после обезвоживания выпариванием с кислотой, применяют осаждение /г-пропиларсоновой кислотой из горячего разбавленного (3 100) солянокислого раствора и последующее нагревание раствора в течение 30— 60 мин. Осадок промывают горячей водой Если присутствуют большие количества железа, как в случае анализа стали, осадок и фильтр разлагают осторожным нагреванием с 10 мл солян(ш кислоты, раствор разбавляют до 100 мл водой и цирконий осаждают "бнова. Осадок можно прокалить в фарфоровом тигле до ркиси 2тО . Олово частично осаждается, но его можно отделить обработкой прокаленного осадка иодидом аммония, как указано на стр. 342. "Если в анализируемом растворе цри-сутствуе.т достаточное для осаждения циркония количество фосфора, выделившийся осадок отфильтровывают и для отделения циркония от фосфат-ионов сплавляют с карбонатом натрия. Плав выщелачивают водой, нерастворимый остаток отфильтровывают, прокаливают, затем сплавляют с пиросульфатом и растворяют плав в воде, содержащей несколько капель серной кислоты. [c.639]

    При анализе шести аликвотных частей стандартного раствора чистого двузамещенного фосфата аммония (без предварительного осаждения в виде фосфоромолибдата) было получено 0,2367 г и 0,2368 г MgaP207 после однократного осаждения, 0,2370 г и 0,2368 г после двукратного осаждения и 0,2366 г и 0,2368 г после трехкратного осаждения. Как показали результаты тщательного определения фосфора в 10 фильтратах и промывных водах от 12 осаждений, при каждом осаждении в среднем теряется менее 0,03 мг РгОб. Совпадение результатов, полученных однократным и двукратным осаждением, является исключением и объясняется тем, что сначала фосфор определялся в растворе двукратным осаждением, причем было вычислено количество магнезиальной смеси, необходимое для получения избытка в 2 мл, а однократное осаждение затем проводилось в растворах, содержапщх этот избыток осадителя, а также и то количество соляной кислоты, которое было израсходовано для растворения первого осадка при других определениях. [c.785]

    В 1984 г. в США потребляли 12,4 млн. т жидких азотных удобрений и более 4 млн. т жидких комплексных удобрений, из них около половины составляли суспензии. Суспензии считаются наиболее перспективным видом удобрений, поскольку они обладают преимуществами жидких удобрений, но превосходят их по содержанию питательных веществ. В связи с удорожанием полифосфорной кислоты разрабатывают технологию получения высококонцентрированных суспензий состава 13 38 О на основе стандартной экстракционной фосфорной кислоты, а также твердых фосфатов аммония. Особенно возросло потребление в суспензиях моноаммонийфосфата в 1979/80 г. оно составило 700 тыс. т, или 50% общего его производства в стране. Перспективно использовать в качестве источника фосфора при получении жидких комплексных удобрений гранулированный кар-бофосфат, что позволяет повысить содержание в них питательных веществ на 25%- [c.267]

    Кроме основных элементов состава клетки (С, N. О, Н) для ее построения необходимы также и другие элементы в очень незначительной массе. К ним относятся калий, кальций, магний, сера, железо, марганец и др. Содержание этих элементов в природных водах обычно бывает достаточным, чтобы полностью удовлетворить требованиям бактериального метаболизма. Азота и фосфора часто не хватает и их приходится добавлять искусственно, обычно в виде одно- и двузамещенных фосфатов калия и хлорида аммония. Это в большей степени относится к производственным сточным водам и в меньшей — к городским, потому что в физиологических выделениях людей содержится много белкового азота и, кроме того, мочевина полностью гидролизуется до аммиака и оксида углерода. Считается, что в процессе очистки сточных вод бактериями преимущественно используется аммонийный азот, но если его недостаточно, то его с успехом может заменить белковый азот. [c.331]

    Чаще применяют для этой цели слабокислотные вытяжки из почвы, которые извлекают из нее воднорастворимые фосфаты и часть соединений фосфора, не растворяющихся в воде. К таким вытяжкам относятся 1—2%-ная лимоннокислая, 2—3%-ная уксуснокислая, 0,2 н. солянокислая, 0,002 н. сернокислая (с дебавлением сульфата аммония для поддержания pH на постоянном уровне — около 3). Хороший реактив для выделения из почвы усвояемых фосфатов — дистиллированная вода, насыщенная углекислотой. Применяют и раствор молочнокислого кальция, забуференный до pH 3,5, а также 0,5 н. 1ЧаНС0з. Основная идея использования указанных вытяжек — попытка имитировать воздействие на почву корневой системы растений, способной выделять наружу некоторое количество кислот. Нет сомнения, [c.251]

    Метод хроматографии. Газо-жидкостпая и тонкослойная хроматографии также являются ценными методами при анализе разрушения нефти [88]. Изучение разрушения газойля с помощью газовой хроматографии [77] показало, что нефть разлагалась организмами в свежих пробах морской воды с питательной средой, содержащей фосфат аммония в качестве источника азота и фосфора. Через 2—5 сут отмечалось значительное снижение количества алканов (рис. 40). [c.147]

    Фосфаты аммония. Аммиак вступает в реакцию с различными кислотами фосфора, образуя три группы солей, известных как мета-, пиро- и ортофосфаты аммония. Ортофосфаты, за двумя или тремя исключениями, являются единственными солями фо( -форной кислоты, встречающимися в природе. Они являются также единственными солями фосфорной кислоты, употребляемыми сейчас в удобрениях. Поэтому рассмотрение фосфатов аммония ограничится лишь солями ортокислоты. [c.349]

    Процедура получения триаммонийфосфата как предварительная операция в производстве моно- и диаммонийфосфатов применяется также в способе, недавно предложенном Ллойдом (Lloyd) и Кеннеди (Kennedy) Этот способ использует в цикле кислый сульфат аммония в качестве носителя фосфата, содержащегося в фосфорите. [c.355]

    Карбоаммофос — азотно-фосфориое сложное удобрение, получаемое из растворов фосфата аммония и карбамида. Карб0ам1м0-фоска — тройное сложное удобрение, содержащее также хлор ИД калия. Состав этих продуктов приведен ниже  [c.335]

    В качестве стабилизаторов для ряда полимеров рекомендуются неорганические соединения фосфора смесь щелочного гипофосфита ж фенольного или аминного антиоксиданта — для поли-2,3-дихлор-бутадиена-1,3 [633, 1728] кислый фосфат аммония — для поли-хлоропренового каучука [3310] фосфористая кислота — против окрашивания при переработке эфиров целлюлозы [3165]. Указывается также на антиокислительные свойства триметафосфимовой кислоты (НО—РО—NH)g [854]. [c.152]

    Нитроаммофосы и нитроаммофоски, карбоаммофосы и карбоаммофоски совсем не содержат балласта и являются высококонцентрированными безбалластными удобрениями. Концентрация питательных веществ в них может превышать 55%. Возможность легко изменять соотношение фосфорной кислоты, или фосфатов аммония и азотных компонентов — азотной кислоты, нитрата аммония, карбамида, а также солей калия, позволяет получать эти удобрения с любым заданным соотношением питательных веществ, а использование кислот достаточно высокой концентрации и плавов уменьшает энергетические затраты на переработку нейтрализованной массы в твердые гранулированные продукты. Оказывается, например, возможным совмещать нейтрализацию кислот аммиаком с сушкой продукта, которая при этом полностью осуществляется за счет тепла реакций нейтрализации, без дополнительного подвода тепла извне. Отсутствие в реакционной массе соединений кальция позволяет осуществлять быструю и глубокую аммонизацию, так как ретроградация фосфора (образование трикальцийфосфата) в этих условиях невозможна. Поэтому аммонизацию можно вести до перевода всего фосфора в диаммонийфосфат. Получаемые при этом нитро-аммофос и нитроаммофоску называют диаммонитрофосом и диаммо-нитрофоской. При их получении (за счет увеличенного расхода аммиака) уменьшается расход других, более дорогих, чем аммиак, соединений азота (HNO3, NH4NO3). Замена части нитратного азота [c.310]


Смотреть страницы где упоминается термин Фосфаты также фосфориты аммония: [c.788]    [c.229]    [c.36]    [c.71]    [c.151]    [c.166]    [c.661]    [c.474]    [c.38]    [c.7]    [c.36]    [c.36]   
Технология минеральных удобрений и солей (1956) -- [ c.99 , c.133 , c.160 , c.162 , c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Аммония фосфатов



© 2025 chem21.info Реклама на сайте